
Functional model-based design
of embedded systems with UniTi

Kenneth C. Rovers

Functional model-based design
of embedded systems

with UniTi

Kenneth C. Rovers

Members of the dissertation committee:

prof. dr. ir. G.J.M. Smit University of Twente (promotor)
dr. ir. J. Kuper University of Twente (assistant promotor)
dr. ir. A.B.J. Kokkeler University of Twente (assistant promotor)

prof. dr. ir. M.J.G. Bekooij University of Twente / NXP Semiconductors N.V.
prof. dr. ir. F.E. van Vliet University of Twente / TNO

prof. W.M. Taha, Eng., PhD Halmstad University, Sweden
dr. ir. H. Schurer �ales Nederland B.V.

prof. dr. ir. A.J. Mouthaan University of Twente (chairman and secretary)

�is research has been conducted within the Netherlands
Streaming (NEST) project (10346), supported by the Dutch
Technology Foundation STW, applied science division of NWO
and the Technology Program of the Ministry of Economic
A�airs.

�is research has been supported by�ales Nederland B.V.

CTIT
CTIT Ph.D.�esis Series No. 11-213
Centre for Telematics and Information Technology
University of Twente, P.O.Box 217, NL–7500 AE Enschede

Copyright © ���� by Kenneth C. Rovers, Enschede, the Netherlands.

All rights reserved. No part of this book may be reproduced or transmitted, in any
form or by any means, electronic or mechanical, including photocopying, micro-
�lming, and recording, or by any information storage or retrieval system, without
prior written permission of the author.

Typeset with LATEX.
�is thesis was printed by Gildeprint, the Netherlands.

ISBN 978-90-365-3294-5
ISSN 1381-3617 (CTIT Ph.D.�esis Series No. 11-213)
DOI 10.3990/1.9789036532945

F��������� �����-����� ������
�� �������� �������

���� U��T�

P�����������

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magni�cus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag � december ���� om ��.�� uur

door

Kenneth Christian Rovers

geboren op � april ����
te Rotterdam

Dit proefschri� is goedgekeurd door:

prof. dr. ir. G.J.M. Smit (promotor)
dr. ir. J. Kuper (assistent promotor)
dr. ir. A.B.J. Kokkeler (assistent promotor)

Voor jou en mij

Abstract

Advancing the �eld of embedded systems requires a rigorous approach to their
design. �is is because embedded systems are complex, diverse and challenging.
Yet the design of embedded systems is typically performed in an ad-hoc manner.
�ere is strong evidence that this is reaching its limits and that the design process
calls for a uni�ed, integrated, and formal approach. However, we are let down by
tool support. Although many tools exist, none support the following four essential
features: (i) the modelling of multiple domains, (ii) accurate inclusion of time,
(iii) mathematical de�nitions, and (iv) model transformations. In addition, such a
tool must underlie a sound design �ow that adequately supports the complexity of
designing embedded systems.

In this thesis we propose a design �ow and a modelling and simulation frame-
work called U��T� that manages complexity in a top-down fashion; a problem is split
up into sub-problems that are solved individually and then combined. �is design
�ow and framework is based on model-based design, i.e. a single reference model
is iteratively and incrementally developed and re�ned during the design process.
Our approach is a functional approach, not only because it is practical and useful,
but also because it has a mathematical basis supported by a functional language, i.e.
computations are considered as evaluations of mathematical functions.

In this work we specialise the design for the application domain of beamforming
applications. Beamforming applications use signal processing to achieve direction-
ality for an array of antennas. A�er a discussion of the basic theory of beamforming,
we propose a generic platform for beamforming applications. �is platform is hier-
archical in the sense that beamforming is performed in multiple stages, and hybrid
in the sense that both analogue as well as digital stages are used. A directional
antenna can be exploited to search for and track signals-of-interest. Two adaptive
algorithms for tracking are developed in the context of this platform.

Next, we investigate suitable architectures for the platform. Supporting multiple
applications in an application domain requires scalability to accommodate di�er-
ently sized applications and �exibility to accommodate di�erent functionality of
applications. However, the architecture must also be e�cient, because most embed-
ded systems are resource constrained. A tiled recon�gurable architecture is used, as
the tiles provide scalability and recon�gurability provides �exibility. Recon�gurabil-
ity refers to the ability to con�gure a processor to perform the same computations
on a time scale much larger than the processing of individual data elements, im-
proving e�ciency by reducing control signal changes and allowing only a limited
set of con�gurations. As not much is known yet about larger high-performance
applications (such as beamforming) on tiled recon�gurable embedded systems,

viii

we will explore beamforming on tiled architectures. Di�erent beamforming meth-
ods are implemented for a single recon�gurable processor, which can be selected
by recon�guration. Furthermore, recon�gurability supports switching between a
computationally intensive searching algorithm and beamforming combined with a
much less intensive tracking algorithm. �e beamforming applications considered
(radar, radio astronomy, satellite reception and wireless communications) are too
large to �t on a single tile. �erefore such applications must be partitioned over
multiple tiles. �is involves making computation and communication explicit, for
which we use a data�ow model. Furthermore, this requires the communication
infrastructure to be �exible and recon�gurable as well. Finally, we will explore the
mapping of a larger beamforming application, a radio astronomy application, on a
conceptual architecture consisting of �� tiles per integrated circuit (IC).

�e design of a beamforming platform based on a tiled architecture is sup-
ported by a single model that is re�ned during development. �erefore we need
to represent the environment, the architecture and the applications in this model.
�e environment models the signals that are received at the antennas and requires
exact modelling of time delays in the continuous-time (CT) domain. In addition,
analogue hardware is represented in the CT domain, while digital hardware is rep-
resented in the discrete-time (DT) domain and the data�ow (DF) domain is used
to represent the so�ware. We propose to use model transformations for the design
steps in the design �ow, each time breaking down the design into sub-components.
We start with an executable speci�cation using mathematical de�nitions. �en, we
perform analogue/digital co-design and hardware/so�ware co-design to divide the
functionality over the domains. �e next step is divisionwithin a domain, consisting
of partitioning the application (so�ware). �is last step requires parallelisation of
the application, a�er which the partitioned application is mapped and implemented
onto the tiles, i.e. assigned to hardware.

�ere are few tools that support the CT, DT and DF domains in a single frame-
work. �ere are even fewer tools that support model transformations for the pre-
sented design steps. Finally, there are no tools (to the best of our knowledge) that
are able to exactlymodel time transformations, such as time delays.

U��T� does provide these features. It supports multiple domains: we formally
de�ne the CT, DT and DF domains. U��T� also supports exact time delays in the
CT domain. �is is made possible because signals in the CT domain are represented
as functions of time, and model components, represented as signal transformations,
are composed using function composition instead of value-passing. To integrate
the domains their interaction is de�ned. U��T� supports uni�ed sequential, parallel
and feedback composition of model components. �is is achieved by re-de�ning
the data�ow model to match with CT and DT components and signals. As a conse-
quence, mixed-domain models are executable for simulation. State is introduced to
improve simulation performance. Visualisations are provided as side-e�ects during
simulation. Finally, U��T� provides support for model transformations; by using
(i) automated interaction between domains, (ii) aggregate de�nitions which specify
algorithms at a higher abstraction level, and (iii) by higher-order transformations
that exploit mathematical properties of the formally de�ned models.

ix

We verify U��T� with beamforming on a tiled architecture as a case study. �e
steps in the design �ow are followed from speci�cation to implementation. An
executable speci�cation is de�ned of a simple beamformer, an adaptive beamformer
with a tracking algorithm and a hierarchical beamformer. Co-design is performed
leading to multi-domain models representing the environment and the system
(architecture and applications). �ese U��T�models are compared to equivalent
models in Simulink, and are found to be more e�cient (in execution time) while
providing exact time delays. Next, the adaptive beamformer is partitioned, mapped
and implemented on a small prototype tiled recon�gurable architecture. Finally,
the U��T� design �ow and framework is evaluated.

�e result of this work is a functional model-based design approach for de-
signing, modelling, and simulation of embedded systems. U��T� supports uni�ed
composition of multi-domain models and accurate inclusion of time. Using a uni-
�ed formal transformational design approach improves the interaction between
domains and enables smaller iterations, early integration and design space explo-
ration; all sustaining the design of more complex systems. As such, embedded
system design is taken to a higher level, allowing the promise of model-based
design to become reality.

Samenvatting

Ingebedde of geïntegreerde systemen zijn complex, divers en uitdagend. Toch blijkt
er bij het ontwerpen van deze systemen vaak sprake te zijn van een ad-hoc aanpak.
Er zijn sterke aanwijzingen dat deze aanpak de ontwikkeling van de systemen be-
grenst. Om verdere ontwikkelingen mogelijk te maken is het noodzakelijk om bij
het ontwerpproces een universele, geïntegreerde en formele aanpak te hanteren.
Gangbare programma’s ter ondersteuning van het ontwerpproces blijken hiervoor
ontoereikend. Hoewel er vele programma’s bestaan, biedt geen daarvan ondersteu-
ning voor vier essentiële eigenschappen: (i) het modelleren vanmeerdere domeinen,
(ii) accurate ondersteuning van tijd, (iii) wiskundige de�nities en (iv) model trans-
formaties. Tevens zou een dergelijk programma de onderbouwing dienen te vormen
van een aanpak die de complexiteit van het ontwerpen van geïntegreerde systemen
adequaat ondersteunt.

In dit proefschri� presenteren we een ontwerpproces samen met een raamwerk
voor modellering en simulatie, genaamd U��T�. Hierin wordt complexiteit beheerst
door het probleem op te splitsen in deel-problemen, deze individueel op te lossen,
en vervolgens weer te combineren. Het ontwerp proces en raamwerk zijn afgeleid
van model-gebaseerd-ontwerp. Hierbij wordt één enkel referentie model iteratief
en stapsgewijs ontwikkeld en ver�jnd. Onze aanpak is een functionele aanpak, niet
alleen omdat het praktisch en bruikbaar is, maar ook omdat het een wiskundige
basis hee� welke ondersteund wordt door een functionele taal, dat wil zeggen een
berekening wordt beschouwd als de evaluatie van een wiskundige functie.

We specialiseren het ontwerp, in dit werk, voor het applicatie domein van bun-
delvorming applicaties. Bundelvorming applicaties gebruiken signaalverwerking
operaties om richtingsgevoeligheid te bewerkstelligen voor een rooster van anten-
nes. Nadat we de basistheorie van bundelvormen hebben behandeld, wordt een
generiek platform gepresenteerd dat geschikt is voor meerdere bundelvorming
applicaties. Dit platform is hiërarchisch omdat bundelvorming in meerdere stappen
wordt uitgevoerd, en hybride omdat zowel analoge als digitale stappen worden ge-
bruikt. Een richtingsgevoelige antenne kan worden gebruikt om signalen te zoeken
of te volgen. In de context van dit platform zijn twee adaptieve algoritmes voor het
volgen van signalen ontwikkeld.

Vervolgens evalueren we geschikte architecturen voor dit platform. Ommeer-
dere applicaties binnen een applicatie domein te ondersteunen is schaalbaarheid
nodig voor verschillende applicatie groottes, en �exibiliteit voor het ondersteu-
nen van verschillende (bundelvormings-) applicaties. Tevens moet de architectuur
e�ciënt zijn, aangezien geïntegreerde systemen beperkte middelen tot hun be-
schikking hebben. We gebruiken een getegelde hercon�gureerbare architectuur,

xii

waarbij de tegels voor schaalbaarheid zorgen en de hercon�gureerbaarheid voor
�exibiliteit zorgt. Hercon�guratie staat voor het con�gureren van een processor
zodat deze dezelfde berekeningen uitvoert op een tijdschaal die veel groter is dan de
tijdschaal van de individuele data elementen. Daarbij wordt de e�ciëntie verbeterd
door het verminderen van controle signalen. We verkennen verschillende imple-
mentaties van bundelvormen op een getegelde hercon�gureerbare architectuur,
aangezien er nog weinig bekend is over het uitvoeren van grotere reken-intensieve
applicaties (zoals bundelvorming) op getegelde hercon�gureerbare ingebedde sys-
temen. Verschillende bundelvormings methoden zijn geïmplementeerd op een
enkele hercon�gureerbare processor, waarbij de methode wordt geselecteerd door
hercon�guratie. Hercon�guratie ondersteunt ook het wisselen tussen een reken-
intensief zoek-algoritme en de combinatie van bundelvormen met een veel minder
reken-intensief volg-algoritme. De beoogde bundelvorming applicaties (radar, ra-
dio astronomie, satelliet ontvangst en draadloze communicatie) zijn te groot om
uitgevoerd te worden op één tegel. De applicatie moet daarom verdeeld worden
over meerdere tegels. Hiervoor worden de berekeningen en de communicatie ex-
pliciet gemaakt door gebruik te maken van een data�ow model. Verder moet de
communicatie infrastructuur evenwel �exibel en hercon�gureerbaar zijn. Tenslotte
onderzoeken we de verdeling van een grotere bundelvorming applicatie, een radio
astronomie applicatie, over een concept architectuur bestaande uit �� tegels per
geïntegreerd schakeling (IC).

Het ontwerp van een platform voor bundelvormen gebaseerd op een getegelde
architectuur wordt ondersteund door één model dat tijdens het ontwerp proces
wordt ver�jnd. In dit model worden daarom de omgeving, de architectuur en de ap-
plicatie gerepresenteerd. De omgeving modelleert de signalen die door de antennes
worden ontvangen, en het is daarbij noodzakelijk dat tijdvertragingen in het conti-
nue tijd (CT) domein exact zijn. Tevens is de analoge hardware gerepresenteerd in
het CT domein, terwijl de digitale hardware in het discrete tijd (DT) domein wordt
gerepresenteerd en het data�ow (DF) domein is gebruikt om de so�ware te represen-
teren. We gebruiken model transformaties voor de ontwerpstappen in het ontwerp
proces, waarbij elke keer het ontwerp opgedeeld wordt in sub-componenten. Het
startpunt is een uitvoerbare speci�catie door gebruik te maken van wiskundige
de�nities. Dan verdelen we de functionaliteit over de domeinen door gebruik te
maken van analoog/digitaal co-ontwerp en hardware/so�ware co-ontwerp. De
volgende stap is verdeling binnen een domein, bestaande uit opdeling van de appli-
catie (so�ware). Deze laatste stap vereist parallellisatie van de applicatie, waarna de
opgedeelde applicatie wordt toegewezen aan en geïmplementeerd op de tegels van
de hardware.

Er zijn weinig programma’s die de CT, DT en DF domeinen in één raamwerk
ondersteunen. Er zijn nog minder programma’s die modeltransformaties ondersteu-
nen voor de gepresenteerde ontwerp stappen. Tenslotte zijn er geen programma’s
(zover ons bekend) die in staat zijn tijdtransformaties, zoals een tijdvertraging,
exact te modelleren.

U��T� ondersteunt dit allemaal wel. Het ondersteunt meerdere domeinen: we
de�niëren de CT, DT en DF domeinen formeel. U��T� ondersteunt ook exacte

xiii

tijdvertragingen in het CT domein. Dit is mogelijk omdat signalen in het CT do-
mein als functies van tijd worden gerepresenteerd en omdat componenten van
het model, gerepresenteerd als signaal transformaties, worden samengesteld met
functie-compositie in plaats van het doorgeven van waardes. Om de domeinen te
integreren wordt hun interactie gede�nieerd. Tevens ondersteunt U��T� universele
compositie van modelcomponenten met behulp van sequentiële koppeling, paral-
lelle koppeling and terugkoppeling. Om universele compositie mogenlijk te maken
is het data�owmodel hergede�nieerd om aan te sluiten bij CT en DT componenten
en signalen. Als gevolg zijn modellen met meerder domeinen uitvoerbaar voor
simulatie. Het bijhouden van de toestand tijdens de simulatie word geïntroduceerd
om de e�ciëntie te verbeteren. Tenslotte ondersteunt U��T�model transformaties
door gebruik te maken van (i) automatische interactie tussen domeinen, (ii) aggre-
gaat de�nities voor het speci�ceren van algoritmes op een hoger abstractie niveau en
(iii) door hogere-orde transformaties die handig gebruik maken van de wiskundige
kenmerken van de formeel gede�nieerde modellen.

We veri�ëren U��T�met bundelvormen op een getegelde architectuur als een
casestudy. Daarbij worden de stappen in het ontwerpproces gevolgd van speci�catie
tot implementatie. Een uitvoerbare speci�catie van een simpele bundervormer, een
adaptieve bundelvormer en een hierarchische bundelvormer zijn gede�nieerd. De
co-ontwerp stap leidt tot multi-domeinmodellen welke de omgeving en het systeem
(architectuur en applicatie) representeren. DezeU��T�modellen zijn vergelekenmet
equivalentemodellen in Simulink en het blijkt dat de U��T�modellen e�ciënter zijn
(in executie-tijd), terwijl ze ook exacte tijdvertragingen ondersteunen. Vervolgens
is de adaptieve bundelvormer opgedeeld, toegewezen aan en geïmplementeerd op
een kleine getegelde hercon�gureerbare prototype architectuur. Tenslotte zijn het
U��T� ontwerp proces en raamwerk geëvalueerd.

Het resultaat van dit werk is een functionele model-gebaseerde ontwerpme-
thode voor het ontwerpen, modelleren en simuleren van ingebedde systemen.
U��T� ondersteunt universele compositie van multi-domein modellen en accu-
rate ondersteuning van tijd. Door gebruik te maken van een universele formele
ontwerp methode met modeltransformaties wordt de interactie tussen de domei-
nen verbeterd en worden kleinere iteraties, snellere integratie en exploratie van
de ontwerp-ruimte mogelijk; allemaal dragen ze bij aan het ontwerpen van meer
complexe systemen. Het ontwerpen van ingebedde systemen wordt als zodanig
naar een hoger niveau getild, waarmee de belo�e van model-gebaseerd ontwerp
realiteit kan worden.

Dankwoord

Voor je ligt het resultaat van vijf jaar hard werken. Dat promoveren een uitdaging
zou worden stond van te voren al vast. Dat de grootste uitdaging niet in het werk
zou liggen had ik echter niet kunnen weten. Maar het is gelukt; het boekje ligt er. Er
zijn echter vele mensen die hier direct of indirect aan hebben bijgedragen, zonder
wie het niet gelukt was, en die wil ik hierbij dan ook graag bedanken.

Ten eerste wil ik natuurlijk mijn promotor en co-promotoren, Gerard, Jan en
André, bedanken. Jan kwampas bij de groep toen ik al anderhalf jaar bezigwas,maar
direct was er de herkenning in de manier van programmeren die Jan meebracht.
Door mijn gecombineerde achtergrond in elektrotechniek en informatica paste
functioneel programmeren veel beter bij mijn belevingswereld. In de zomer van
���� gingen Jan en ik naar een “summer-school” over multi-processor systemen in
Valkenburg. Ik kan wel zeggen dat de kern van dit proefschri� tot stand is gekomen
tijdens deze week. Deze benadering was echter zo vanzelfsprekend voor mij, dat het
nog lang hee� geduurd voordat ik herkende dat mijn aanpak wezenlijk vernieuwend
was. Dit was nooit gelukt zonder de hulp en het vertrouwen van Jan. Samen hebben
we nog wel keihard moeten werken om alles rond te krijgen het afgelopen jaar, en
ook daar ben ik Jan heel dankbaar voor.

Ook bij André staat de deur altijd open. André weet feilloos de kern van je werk
en wat je wil zeggen bloot te leggen. En bij eventuele problemen weet je zeker dat
een paar uur discussie met André, samen met een vol white-board, een oplossing
gee�. Als je met werk of vragen van welke aard dan ook bij André komt; je kan erop
rekenen dat het secuur bekeken wordt en dat je met goed advies, inclusief een lijst
met spelfouten, weer vertrekt. Hier heb ik de afgelopen jaren dan ook veelvuldig
gebruik van gemaakt.

Gerard is er voor het grote geheel, en als zodanig perfect op zijn plaats als prof
van de groep. Gerard hee�me de mogelijkheid en ruimte gegeven om de inhoud
van mijn promotie zelf te bepalen, maar toch weet Gerard altijd de koppeling en
relevantie van het werk met de rest van de groep te behouden. Ook kan je altijd bij
Gerard terecht als er een stuk tekst, zoals een paper of een hoofdstuk, gereviewed
moet worden. Binnen no-time heb je dan commentaar terug dat exact aangee�
waar de sterke en zwakke punten zitten. Hier heb ik vele malen veel pro�jt van
gehad.

Ook de rest van de commissie wil ik graag bedanken; Hans voor de vruchtbare
discussies tijdens de vele bezoeken aan�ales, en tijdensmijn stage daar, Frank voor
het samen brainstormen over de inhoud en de structuur van het proefschri�, wat de
lijn van het verhaal erg hee� geholpen, Marco voor de altijd interessante discussies,
welke vaak nuttig bleken om mijn claims scherp te krijgen, and �nally Walid Taha

xvi

who, as one of the few, is also working in both the areas of functional programming
and embedded system design, and who provided encouraging acknowledgement
of my work in a larger setting than the Twente region.

Tijdens mijn promotie ben ik betrokken geweest bij het NEST project en bij het
CMOS Beamforming project. Iedereen bedankt voor de interessante presentaties,
discussies en feedback die voortkwamen uit deze projecten de afgelopen jaren.

Als dubbelstudent lag mijn interesse op het grensvlak van elektrotechniek en
informatica, tussen hardware en so�ware, tussen analoog en digitaal, toegepast op de
architectuur. Het was dan ook logisch dat ik bij de CAES groep terecht kwam, waar
dit ook leefde. Ik was één van de eerste AiO’s die Gerard als nieuwe prof aannam en
heb CAES onder zijn hand (verder) zien uitgroeien tot een geweldige, dynamische,
betrokken en bovenal gezellige groep: bedankt allemaal. Ook onmisbaar zijn
natuurlijk de secretaresses, wat dat betre� zitten we bij CAES goed met Marlous,
�elma en Nicole.

Het gros van de tijd heb ik Marcel als kamergenoot en als semi-gedeelde project-
genoot gehad. Buiten dat het erg gezellig was, heb ik onze samenwerking altijd als
zeer prettig ervaren; vaak lagen wij op één lijn wat betre� onze ideeën, maar toch
konden we elkaar ook altijd aanvullen. Meestal samen hebben we een heel blik aan
afstudeerders begeleid, wiens werk zeker ook hee� bijgedragen aan dit proefschri�:
Rik, Jasper, Mark, Koen, Gerard, Fassil en Rinse bedankt.

Met de voorbereiding en tijdens de verdediging ben ik heel blij dat Koen en
Bastiaan mij bijstaan als paranimfen. Bastiaan ken ik al van uit de box en tijdens
de middelbare school werden we echt goede vrienden. Samen hebben we ook een
�at en onze studietijd gedeeld. Een tijd die ik enorm waardeer en waar ik met veel
plezier aan terug denk. Ook daarbuiten ben je er altijd als vriend. Het is daarom
ook passend dat je er bij bent, bij deze toch soort van afsluiting van het “eeuwige‘”
studeren. Koen ken ik een stuk korter, maar zeker sinds je in Zutphen woont stel
ik je vriendschap op prijs, met vele goeie discussies of gezellige gesprekken, in de
trein of bij een biertje. Daarbuiten heb je ook een belangrijke inhoudelijke bijdrage
geleverd aan dit proefschri�. Fijn dat je me daarom ook bijstaat als paranimf.

Het lijkt soms zo dat er geen wereld is buiten het promoveren, maar toch had ik
het zonder vrienden en familie niet gered. Sommige daarvan ken ik al heel lang.
Toch hee� soms de frequentie van het contact moeten lijden, maar dat maakt de
waardering niet minder. Ik kan de verleiding toch niet weerstaan om een aantal in
het bijzonder te noemen; Bas & San, en tegenwoordig ook kleine Hannah, bedankt
voor jullie vriendschap. Ermano, ook wij hebben al heel wat meegemaakt, bedankt
voor alles. Anneke, ik zie je wat minder, maar elke keer weer sinds die eerste vlucht
naar de nieuwe wereld, klikt het. Van mijn UT tijd heb ik ook een aantal goeie
vrienden overgehouden. Arno, met jou is het altijd een avontuur, op de scooter in
Koh Phangan of in de kajak bij Milford Sound, of gewoon in Nederland met een
goed gesprek. Jeroen, jouw drive en enthousiasme heb ik altijd bewonderd, maar
bovenal waardeer ik je gezelligheid. Tenslotte wil ik dan nog de familie bedanken:
opa en oma natuurlijk, alle ooms en tantes, en alle andere familie.

De basis van wie je bent wordt toch thuis gelegd, en wat dat betre� had ik het
niet beter kunnen tre�en. Altijd kon en kan ik terugvallen voor steun, warmte en

xvii

vertrouwen. De basis van mijn nieuwsgierigheid, motivatie, het doorzettingsvermo-
gen en de rust komt van pap. Het doet dan ook veel pijn dat je er niet in persoon
bij kan zijn. In mijn hart draag ik je bij me, ik weet dat je trots zou zijn. Mam, van
jou komt het enthousiasme, de kracht, en alle steun en zorg die ik nodig heb. Dit
proefschri� is ook voor jou. Natuurlijk is thuis niet compleet zonder mijn broertje.
Dan, bedankt voor je levendigheid en plezier. Samen met Marieke en lieve kleine
Mirthe is het nog steeds een geweldig thuis.

Al aardig wat jaren nu heb ik ook een nieuw thuis, met Linda, mijn allerliefste
schat. Het was een pittige tijd, maar met jou heb ik het samen gedaan, altijd ben je
er voor me, weet je wat er moet gebeuren en geef je me net het beetje extra dat ik
nodig heb.

Kenneth Rovers
Warnsveld, November ����

Table of Contents

� I����������� �
�.� Trends in embedded systems . �
�.� Beamforming as an example . �
�.� Problem statement . �
�.� Contributions . �
�.� Outline . ��

� A���������� ������: ����������� ��
�.� Characteristics . ��
�.� Phased array beamforming theory . ��
�.� Generic beamforming platform . ��
�.� Beamcontrol . ��
�.� Conclusion . ��

� T���� �������������� ������������� ��� ����������� ��
�.� Requirements from the application domain . ��
�.� Architecture . ��
�.� Experiments with tiled recon�gurable architectures ��
�.� Conclusion . ��

� M����-����� ������ �� �����-������ ������� ��
�.� Motivation . ��
�.� Time, signals, components and systems . ��
�.� �e problem with time . ��
�.� Survey of existing tools . ��
�.� Uni�ed modelling based on time . ��
�.� Design �ow . ��
�.� Conclusion . ���

� U��T� ���
�.� Formalisation of the domains . ���
�.� Composition . ���
�.� Integration of the domains . ���
�.� Simulation . ���
�.� Model transformations . ���
�.� Conclusion . ���

xix

T����
��

C
�������

� C��� ����� ���
�.� Speci�cation . ���
�.� Co-design . ���
�.� Partitioning . ���
�.� Mapping . ���
�.� Implementation . ���
�.� Results . ���
�.� Conclusion . ���

� C���������� ���
�.� Research questions . ���
�.� Discussion . ���
�.� Outlook . ���

A D������� ���
A.� Terminology . ���
A.� Data�ow model . ���
A.� Data�ow analysis . ���
A.� Data�ow execution . ���
A.� Properties . ���

B T��M������ ���
B.� Processor landscape . ���
B.� �e M������ processor . ���
B.� Kernels implemented on the M������ . ���

A������� ���

B����������� ���

L��� �� P����������� ���
Refereed . ���
Non-refereed . ���

C������ 1
Introduction

Embedded systems are everywhere; in your car, your television, your mobile phone,
printer, router, pacemaker, dish washer etc. As such the embedded systems market
is huge and fast growing [��], but as they are embedded into larger systems their
presence remains relatively unnoticed to the general public. Yet embedded systems
are clearly relevant because of their ubiquity, and they are challenging because of
their variety and complexity.

Although existent in a wide variety, there are some common characteristics.
All embedded systems are computer systems interacting with their environment,
i.e. they contain some form of information processing and interaction via sensors
and actuators. �e system must continuously monitor and process the signals
coming from the environment and act accordingly, i.e. most embedded systems are
control systems and contain a lot of signal processing. For example, the embedded
system in a refrigerator measures the temperature and based on that controls the
cooling system. In addition, an embedded system comprises multiple domains:
there are elements with continuous dynamic behaviour such as sensors or analogue
�lters as well as elements with discrete dynamic behaviour such as digital processors
or specialised digital hardware for e.g. encryption. A system with both continuous
and discrete dynamic behaviour is called a hybrid system. Typically embedded
systems are resource constrained, e.g. they must perform their job with limited
processing power, limitedmemory, limited area, andwith a low energy consumption.
At the same time, embedded systems must be highly reliable and stay within timing
constraints. �erefore, it is important that an embedded system is not only correct,
but also on time. �is means (physical) time is an important aspect for embedded
systems.

Overall, most embedded systems are complex and constrained by the interaction
with the environment and a limited amount of resources. To deal with this, an
embedded system is o�en optimised for a speci�c application domain, i.e. a range
of applications that have similar characteristics. �e complexity of the system is

�

C
��

��
��

�.
I�
��

��
��

��
��

reduced by limiting the required functionality to that required by the application
domain, and processing elements can be specialised to and optimised for their
common characteristics. On the other hand, as a range of applications must be
supported, the requirements of which can also change over the lifetime of the
embedded system, the systemmust also have enough �exibility to cope with this. In
other words, an embedded system consists of (specialised) hardware and so�ware.
A second strategy to deal with the complexity of embedded systems is to divide the
system into sub-components, each with well-de�ned responsibilities and interfaces.
Such components can then be designed independently, re-used for multiple systems
and optimised for their task. �e resource requirements, both in integrated circuit
(IC) area and energy consumption, are further reduced by integrating these sub-
components on a system-on-chip (SoC). When such components are connected by
a network-on-chip (NoC), we will call them tiles and the architecture of the SoC is
called a tiled architecture. �e architecture is also heterogeneous; as the tiles are
optimised for their task to deal with a limited amount of resources they are not all
the same but di�er in functionality, size, e�ciency, etc.

In this thesis we will limit the class of applications to streaming applications.
Streaming applications operate on streams of data such as audio or video, i.e. new
data is not available at once but is made available over time. Typically, streaming
applications consist of signal processing operations such as �ltering or compression.
For embedded systems, the data-rate of the streaming data is o�en high requiring
a relatively large amount of communication per computation. As such, the per-
formance must be su�cient to keep up with the (high) data-rates. �erefore, the
architecture of the system is mainly concerned with the �ow of data, in contrast
to the �ow of control as is more common in general purpose architectures [��].
Relevant characteristics of streaming applications are latency (how long it takes
for data to go through the system), throughput (how much data is processed per
time unit), and real-time constraints that determine the maximum latency and
minimum throughput for a de�ned data rate such that correct operation of the
system can be guaranteed.

Designing, modelling and verifying embedded systems is a big challenge; the
systems are complex, they comprisemultiple domains, they are resource constrained
and they need to provide guarantees. As a consequence, the designer needs knowl-
edge about hardware, so�ware, analogue design, digital design, computer archi-
tecture, control theory, signal processing and their interaction. Especially their
interaction is important: each respective �eld is well developed but synergy be-
tween the �elds is lacking and not well understood in our opinion�. However, this
is essential for current complex multidisciplinary embedded systems. We believe a
uni�ed approach will strengthen the collaboration between the �elds, a view shared
by [��, ��, ��, ��]. However, no satisfactory tool or framework supporting this
exists. In this thesis we will propose a design �ow and supporting framework, called
U��T�, which does o�er a uni�ed approach to designing, modelling and simulating
embedded systems.

�Which is understandable considering the amount of knowledge required.

�

�e hardware and the so�ware of embedded system can not be considered in
isolation as they in�uence each other; they need to be considered simultaneously,
i.e. embedded system design requires a holistic approach. �ere are e�orts to
support both hardware and so�ware in one computationmodel such as synchronous
languages (e.g. Esterel [��], Lustre [��]) or data�ow (e.g. [��, ��]) or recent e�orts
such as SystemC [��]. We will use the data�ow (DF) domain for representing an
application on a tiled architecture.

�e hardware/so�ware co-design approach, however, focuses on the digital side
of a design and does not include the analogue side. In this thesis wewill take a further
step in integrating design methodologies by including analogue components, i.e.
analogue/digital co-design or mixed signal design. �e integration of analogue and
digital components requires support for the continuous-time (CT) domain and the
discrete-time (DT) domain. In addition, if the interaction of an embedded system
with the environment has a signi�cant e�ect on its operation, the environment
must be included in the model. �e need for this is o�en the case, illustrated by the
recent interest in “cyber-physical” systems, which emphasises this interaction with
the environment [��, ��]. �e environment is typically modelled in the CT domain.
So for a uni�ed approach, support is required for the CT, DT and DF domain,
expressing the environment and analogue hardware, the digital hardware and the
so�ware respectively. A single uni�ed domain will not su�ce and is not desirable
as we will �nd that these domains have signi�cantly di�erent interpretations of
model components and interaction. For integration of the domains it is therefore
important to have a precise de�nition of their interaction (also see [��]). A formal
representation of these domains and their interaction is presented for U��T� in the
present work, enabling such integration.

In each of the relevant �elds for embedded system design, models aid the
design process and are used for functional veri�cation. Such models provide an
abstraction of relevant properties of a design. Of course, what is considered an
adequate abstraction changes during the design process; at �rst a basic model is
su�cient but as the design develops more detailed properties and second order
e�ects of the system under design are needed for veri�cation. In other words, the
design is continuously re�ned during the design process. �us, modelling and
simulation of the design in its various stages of development is of great importance.
U��T� is a design �ow and framework based onmodel-based design that supports
design re�nements. Model-based design makes the model the centre of the design
process. Using model-based design, a single reference model is iteratively and
incrementally developed and re�ned, aiming at shortening the design cycles and
making integration part of the design process early on. However, in order to make
this a viable approach, we need to ensure such a re�nement is correctness preserving.
Hence, this is supported in U��T� with model transformations.

Model transformations are used to provide structured and well-de�ned re�ne-
ments. We use formally de�ned models so that mathematical properties of such
transformation can be proven, ensuring that they arewell-de�ned. Others too plead
for a mathematical basis for system modelling and analysis [��, ��, ��]. Ideally,
automated model transformations could be employed to evaluate many di�erent

�

C
��

��
��

�.
I�
��

��
��

��
��

designs, so-called design space exploration. In practice, model transformations
are guided by and even performed manually by the designer. By de�ning models
formally and at a higher abstraction level, we will �nd that the designer e�ort for
applying model transformations is reduced.

�e time at which events from the environment occur is out of the control of the
embedded system. Yet the response time or reaction time of the embedded system
is typically constrained. In other words, accurate inclusion of time in modelling
is vital, when interfacing with the environment, to verify the behaviour of an
embedded system over time. In computing, physical time is mostly abstracted
away and the time a computation takes is mainly a matter of performance [��].
In real-time systems the reaction time is important for correctness rather than
performance; typically such systems are control systems that react to an event from
the environment and must do so within time constraints [��]. However, time in
real-time systems is the execution time of the processing as response from events
from the environment; it does not include physical time such as the delay of signals
over the network or the CT response of an analogue �lter at the input of the system.
Mixed domain simulation tools such as Simulink do support modelling physical
time, but do not support the modelling of execution time with real-time analysis.
In addition, current mixed domain tools model the CT domain by discretising a
global simulation time into small time steps and representing signals as a sequence
of values at these time steps. As a result, such time steps must be small enough for
an accurate representation of the signals. Furthermore, when the time reference of
a value is changed, such as for a time delay, and a value at a time between the time
steps is needed, interpolation is used between available values. �e interpolation
approximates the actual value, thereby introducing inaccuracies. Such inaccuracies
are not part of the modelled system but are modelling artefacts introduced by
the modelling tool. �ese modelling artefacts are not easily distinguishable from
modelling of signal distortions that are present in the physical system such as noise
or non-linearities. In U��T� we support exact modelling of the CT domain as well
as supporting execution time in the DF domain for real-time analysis.

In summary, the design of embedded systems consists of managing complex-
ity by specialising to dedicated functionality, by applying a divide-and-conquer
approach and by employing model-based design. Using a model-based design
�ow for designing embedded systems requires a modelling and simulation tool
or framework. Unfortunately, support for multiple-domains, time, mathematical
de�nitions and model transformations is not well represented in current design
and modelling tools. �is thesis on functional model-based design of embedded
systems proposes exactly such an approach: a functional approach, because it is
practical and useful, but also because it has a mathematical basis supported by a
functional language. �is approach is called U��T� to emphasise the uni�cation of
the design �ow, the uni�cation (and integration) of the CT, DT and DF domains,
and the uni�cation and accurate inclusion of time.

�

�.�.
T�������

��
������

������
�

�.� T����� �� �������� �������

We will identify current trends for the design of embedded systems, so as to guide
our work in the coming chapters and evaluate its applicability.

Complexity �e complexity of designing embedded systems is increasing as
applications are becoming more demanding. Besides common design criteria of
embedded systems such as price, energy e�ciency, real-time requirements and
application speci�c performance [��], embedded systems must guarantee service
with correct functionality while interaction with the environment is increasing
and becoming more important, making the inputs and outputs of the system less
predictable [��]. �is makes complexity the major challenge for embedded system
design.

Model-based design To deal with increasing complexity the use of models and
model-based design is becoming essential [��, ��]. One step in raising the abstrac-
tion level is for example SystemC [��], for which a system is a hardware architecture
plus so�ware. �is is a large step forward compared to hardware description lan-
guages such as VHDL which do not support hardware/so�ware co-design. O�en
model transformations in model-based design are about code generation [��, ��].
To raise the abstraction level further, multiple domains in a single model sup-
ported by “higher level” model transformations are necessary. In this thesis model
transformations are considered for the whole design process from speci�cation to
implementation.

Multi-domain integration Cost and size reductions for embedded systems are
achieved by integrating digital components on an SoC. A natural next step is integrat-
ing analogue hardware and digital hardware on a single chip, so-called mixed-signal
ICs. For example in the CMOS Beamforming Techniques project� we research the
feasibility of mixed analogue and digital beamforming and a suitable integrated ar-
chitecture on a single (CMOS) chip, which could enable beamforming for consumer
applications because of the higher integration and lower cost. As technology and
integration continues, mixed-signal ICs are expected to become more common for
embedded systems. As explained above, a second trend is the increasing emphasis
on including the environment in the modelling and design process [��, ��].

Modelling time We have already motivated that accurate inclusion of (physical)
time inmodelling is vital. As embedded systems are expected to increasingly interact
with the environment, support for modelling time is increasingly important [��].

Adaptivity Applications are becoming more adaptive and dynamic. For exam-
ple, in the latest digital video broadcast for satellite (DVB-S) standard for satellite
broadcasting, adaptive coding and modulation is used on a frame by frame basis

�STW project CMOS Beamforming Techniques (�����) [��]

�

C
��

��
��

�.
I�
��

��
��

��
��

depending on the signal conditions [��]. Another example is a user running appli-
cations on a mobile phone; at any time a new application can be started, possibly
together with other time critical applications. Embedded systems must be �exible
enough to support adaptivity such as switching functionality or adding functionality
as a result of changing conditions.

Many-cores ICmanufacturing is still followingMoore’s law, meaning the number
of transistors on a single chip doubles approximately every two years [�]. However,
the extra transistors are used di�erently. Single core processor performance has
stopped increasing because we hit a limit in the power usage and thereby the
operating frequency, the relative memory latency has become larger, and it has
become di�cult to �ndmore parallelism in sequential programs [�]. To still improve
performance and make use of the extra transistors, more processors are combined
on a chip. �e number of cores is expected to increase further leading to many-core
architectures (hundreds of cores). For example, Intel already has ��-core processors
and a ��-core research chip [���].

�is work has been performed in the NEST project�. In this project, we are
researching high performance streaming applications on tiled many-core archi-
tectures. In the NEST project research ranges from a system-level design �ow,
modelling and analysis to the implementation of tiled architectures and the applica-
tions running on the architecture. Tiled architectures are used to design scalable
systems; by adding tiles the system can perform more processing and/or achieve
a higher performance. In addition tiled architectures provide dependability; if a
tile breaks down during the lifetime of the system it can be replaced by one of the
additional redundant backup tiles, or the performance of the system is reduced
enabling graceful degradation.

Larger applications Until recently, tiled architectures have been mainly used for
multimedia applications [��, ��, ���]. �ose applications themselves are becoming
more complex requiring more processing power. However as tiled architectures
are becoming more powerful, also larger applications can be supported. Many
high-performance applications also operate on streams of data and could bene�t
from the energy e�ciency, scalability and dependability of an embedded system
based on a tiled architecture. For example, in the NEST project we are usingmedical
imaging and radar processing as case studies. �e radar processing case study is
performed in cooperation with�ales Nederland B.V., which specialise in radar
equipment, and will be used as a case study in this thesis.

Flexibility and e�ciency �ere is a trade-o� between �exibility and e�ciency, as
a more �exible system requires more hardware [��] making it less (energy) e�cient.
Flexibility is required to support adaptivity, but also to be able to adapt to future
requirements that are not yet known during the design of the system. In addition, a
more �exible system can be used for a broader class of applications. For example,

�STW project NEST: Netherlands Streaming (�����) [��]

�

�.�.
B���

����
���

����
����

���

a (hardware and so�ware) platform that supports multiple applications from an
application domain. �is way the development costs can be shared among the
applications. On the other hand embedded systems are resource constrained and
e�ciency is an important factor of the design.

Hardware costs are becoming less important as the number of transistors on
a chip increases. �erefore embedded systems are becoming more �exible. Yet,
energy e�ciency is becoming more important. In our view, recon�gurable systems
nicely balance �exibility and (energy) e�ciency and are a good choice for systems
that require a modest amount of �exibility, i.e. functionality that changes every few
hundred clock cycles or less.

�.� B���������� �� �� �������

�roughout this thesis beamforming applications are used as an example of large
high-performance streaming applications. Beamforming applications use the sig-
nals of multiple antennas to make a directional receiver. �is direction can be
electronically controlled by processing the streaming data from the antenna signals.

�e design of an embedded system as platform for beamforming applications
will form a good case study as it covers all of the above trends in embedded systems.

A signal from a direction of arrival (DoA) at an angle with an array of antenna
elements will arrive at a slightly di�erent time at each element. �e beamforming
application will correct for these time di�erences so that the antenna signals all add
up coherently. To model and simulate a beamforming system, accurate representa-
tions of the antenna signals need to be generated. In other words, the environment
needs to be included in the model where the source signal experiences a time delay
to each antenna, and these time delays must be modelled accurately.

Beamforming can be performed in multiple stages, a so-called hierarchical
beamformer. One or more of these stages can also be performed in the analogue
domain, giving a hybrid beamformer. For including these analogue beamforming
front-ends in themodel, as well as for the environment, we needCT domain support.
Furthermore, beamforming reduces the data rate by combining signals, so analogue
beamforming reduces the amount of digital processing, but digital beamforming is
more �exible. So there is a trade-o�, requiring an analogue/digital co-design step
during the design process.

A beamforming application consists of straightforward processing of the an-
tenna signals, yet requires complex control for determining the steering direction.
As the number of antennas can be large, the processing must be performed ef-
�ciently. �e steering direction is determined by an adaptive algorithm. In the
general case, the initial DoA of a signal-of-interest is unknown, requiring a search
algorithm. Such an algorithm is computationally complex. When the initial DoA
is found, a tracking algorithm can be used which is less computationally complex.
We will develop a novel tracking algorithm for modulated signals with a constant
modulus and phase, i.e. for phase-shi� keying (PSK) modulated signals. �is algo-
rithm determines a steering correction per antenna to track the signal-of-interest.

�

C
��

��
��

�.
I�
��

��
��

��
��

However, such steering corrections are not useable for an hierarchical beamformer.
�erefore, we will develop a second tracking algorithm providing a steering angle,
which is useable for an hierarchical beamformer at a slightly higher computational
complexity but still much less complex than a search algorithm.

Traditionally, for radar and radio astronomy applications, the design of (high-
performance) beamforming systems is driven by functional requirements (e.g.,
resolution, sensitivity, response time) where non-functional requirements (e.g.,
costs, power consumption) are of secondary concern [���]. For that reason, no low-
cost, low-power systems for more than a few antennas are available yet. However,
in areas like wireless communications and satellite receivers, phased array antennas
show great promise but their large scale introduction has been obstructed by the
high costs involved. In this work we present a generic platform for beamforming
applications. �e goal is to develop a low-cost, low-power beamforming platform by
using a scalable architecture that is �exible enough to support multiple applications,
such that the same architecture can be reused. In addition, �exibility is used to
switch between an initial searching algorithms and a tracking algorithm. Conven-
tional beamforming architectures typically use a large amount of dedicated central
processing hardware, making the system neither scalable nor power e�cient [��].

We postulate a tiled recon�gurable architecture will provide such a scalable and
�exible platform, as they o�er high performance (by enabling parallel processing
through multiple processors) and �exibility within a certain application domain
(recon�guration enables e�cient reuse of hardware by recon�guring parts of an
application). In other words: scalability is achieved by adding tiles, while �exibility,
with a limited reduction in e�ciency, is achieved by recon�guration. Hierarchical
beamforming is used to achieve scalability in the application. To verify the suit-
ability and to explore the consequences of a tiled recon�gurable architecture for
larger applications, the beamforming application is mapped on a small existing
tiled architecture and a larger concept architecture. As expected, the beamforming
application is too large to run on a single tile and must be partitioned over multiple
tiles. �erefore, communication between the parts of the application needs to be ex-
plicit. �e DF domain provides a �tting representation for partitioned applications,
as also used in [��, ���]. �e DF domain is therefore also required for modelling
and simulation.

�.� P������ ���������

�e topic addressed in this thesis is managing complexity in the design of embedded
systems. Whenever complexity is encountered (e.g. during design, de�ning an
architecture, implementing the application) the same approach is applied: divide-
and-conquer.

For the design process, we choose for a model-based design approach. Such
an approach needs a modelling and simulation framework that supports a single
model containing multiple domains and model transformations. For the architec-
ture, we choose for a tiled recon�gurable design. Such an architecture supports the

�

�.�.
C
������������

scalability and �exibility needed for a generic platform for the application domain
under consideration. As application case study, a larger application is considered
requiring modelling of the environment and containing analogue and digital com-
ponents. �is larger application must be partitioned over and implemented on the
proposed tiled architecture. �is requires explicitly separating computation and
communication, and parallelisation of the application.

�is leads us to the following research questions and propositions:
• What is a suitable design �ow for embedded systems based on a divide-and-
conquer approach? A division based on model transformations is needed
that requires transformations that are generic, well-de�ned and correctness
preserving.

• What is required from amodelling and simulation framework to support this
design �ow? �e environment, the architecture and the application are to be
modelled, requiring accurate and e�cient support for multiple domains and
their interaction.

• Are tiled recon�gurable architectures suitable for large high-performance
applications? Such applications must be de�ned in such a way that they can
be parallelised and partitioned for a tiled architecture.

�.� C������������

�e main contribution of this thesis is a functional model-based design approach
for designing, modelling and simulating embedded systems based on a sound math-
ematical foundation. We will limit our scope to an application domain requiring
high-performance streaming processing, yet propose a hierarchical scalable and
�exible platform to support multiple applications in this domain. We will then
explore the consequences of mapping such an application onto a SoC with a tiled
architecture. As a result from the requirements of the application and architecture,
we propose a design �ow and framework which uses model-transformations for
co-design and partitioning.

Speci�cally the contributions of this thesis are:
• A design, modelling and simulation framework called U��T� is developed
supporting multi-domain models, model transformations and exact mod-
elling of time [KCR:��] (chapter �). U��T� provides a formal, uni�ed, in-
tegrated and transformational environment for the design of embedded
systems. It is based on function composition of components, where compo-
nents represent signal transformations. We provide a formalisation of the CT,
DT and DF domains in U��T�, and uni�ed composition of mixed-domain
models [KCR:�]. To achieve this, data�ow models are re-de�ned as DF
components and signals. DF components still adhere to data�ow execution
semantics, but in addition can now be composed with CT and DT compo-
nents [KCR:��]. As a consequence, time in the CT or DT domain determines
the time in the DF domain and gives the execution time of data�ow processes
meaning during simulation instead of only during analysis.

��

C
��

��
��

�.
I�
��

��
��

��
��

• A design �ow that raises the abstraction level to include the environment,
analogue/digital co-design, and an executable speci�cation of the hardware
and so�ware [KCR:�, KCR: ��] (chapter �). �e design �ow proposes a
co-design step as model transformation from the speci�cation to a model in-
cluding the environment, the architecture and the applications. Furthermore,
it proposes a partitioning step as model transformation for parallelising the
application, and a mapping and implementation step.

• Ananalysis ofmodelling time transformations inhybrid systems [KCR:�]
(chapter �). We identify di�erent notions of time in modelling. Current tools
coalesce these notions of time into a single global notion of time. As a result,
the time of continuous signals is discretised during simulation, causing ap-
proximation errors when for example time delays or multi-rate systems are
simulated. �is is because for such systems the exact time at which the value
of a continuous signal is needed may not match with the global discretised
simulation time.

• �e design of an hierarchical beamforming platform suitable for multiple
beamforming applications [KCR:��] (chapter �). A tiled recon�gurable archi-
tecture is explored as architecture for the platform as it provides scalability
and �exibility [KCR:�, KCR: ��] (chapter �). A larger application such as
beamforming requires the application to be divided over the tiles. Di�erent
implementations of beamforming applications are evaluated with respect
to their required computation and communication. �e beamforming ap-
plication on a tiled recon�gurable architecture is used as a case study for
U��T� [KCR:�, KCR: �, KCR: ��, KCR: ��] (chapter �).

• �e application and analysis of two novel beamcontrol algorithms for
this platform, for tracking signals-of-interest with low computational com-
plexity [KCR:�, KCR: �] (chapter �). �e �rst algorithm allows low-cost
tracking of M-PSK modulated signal when the initial DoA of the signal is
known (by �rst running a search algorithm and recon�guring), but it is
not suitable for hierarchical systems. �erefore an alternative algorithm is
developed that is suitable, but has a higher computational cost.

�.� O������

In this thesis the �rst step in managing complexity for the design of embedded
systems is specialisation. �e application domain of beamforming applications is
presented in chapter �. As result we will �nd that a generic platform for beamform-
ing applications must be scalable and �exible.

In chapter �, recon�gurable tiled architectures are explored for beamforming
applications on the premise that scalability is provided by tiles and �exibility by
recon�gurability.

Following from the discussion of the application domain and architecture we
�nd that functional components of a beamforming application are divided over
a representation of the environment, the hardware (mainly architecture) and the

��

�.�.
O
������

so�ware (mainly application), and that the application is divided over tiles of the
architecture using DF models. �is leads to a design �ow that supports multi-
ple domains, time and model transformations in chapter �. A survey of existing
tools shows that such a tool is not available. �erefore we propose U��T� in chap-
ter �; a multi-domain transformational design �ow and modelling and simulation
framework.

In chapter � the results of the previous chapters are combined in a case study.
An embedded system for beamforming is designed from speci�cation to implemen-
tation and the U��T� design �ow and framework is evaluated.

Finally, we will present the conclusions, and we will discuss future work, in
chapter �.

C������ 2
Application domain: beamforming

A������� – Many embedded systems perform signal processing on streaming
data from the environment. One such application is a beamforming application,
which will form a good case study for the design of embedded systems. In this
chapter we will present the application domain characteristics and basic theory of
beamforming applications. We will then develop a generic beamforming platform.
Such a platform must be (energy) e�cient, scalable and �exible to be cost-e�ective.
�is is achieved with a hierarchical and hybrid design. In addition, we present two
new beamcontrol algorithms for tracking signals with a phased array beamforming
system at a low computational cost.

Embedded systems are specialised for a speci�c application domain in order to
reduce their complexity and improve their e�ciency by requiring embedded systems
to do less, but do it well. A range of applications that have similar characteristics
are together called an application domain. �roughout this thesis we will use the
application domain of phased array beamforming applications as an example.

Phased array beamforming systems use multiple antennas in an array to make
a directional receiver. In essence, a phased array is performing a spatial �lter that
selects the signal from the direction of interest. �is direction can be electronically
controlled, thereby making a phased array system very suitable for situations in
which the direction of the signal is continuously changing or where signals from
multiple directions need to be selected simultaneously.

A beamforming application is a high-performance streaming signal process-
ing application; as an array of antennas is used, each continuously transmitting
or receiving a signal, phased array systems involve a lot of signal processing on
streaming data. Yet, phased array beamforming is typically part of a larger system,

Parts of this chapter have been published in [KCR:�], [KCR:�] and [KCR:��].

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

such as a radar system, that poses resource constraints, e.g. in area, processing
capacity and power. In addition, there are timing constraints resulting from the
continuous stream of data: typically no data may be lost or the reaction time is
bounded. Beamforming systems also interact with the environment by sending
and/or receiving signals. All these characteristics together make a phased array
system a good case study for the design of embedded systems.

Traditionally, phased arrays have been used for radar systems to detect and track
moving targets. Another common use is for radio astronomy, to correct for the
movement of the earth but also because very selective �ltering can be performed in
multiple directions simultaneously. �eir requirements normally dictate a dedicated
design. Costs have withheld the use of phased arrays for other applications, but
one can imagine the usefulness in consumer applications, such as a �exible satellite
receiver or for mobile and wireless communication.

In this chapter we will propose a generic platform for beamforming applications.
By providing a �exible, scalable and e�cient design, the same platform can be re-
used. �is lowers the cost of the platform because the design costs are shared and
the production volume is higher, thereby possibly enabling phased array systems for
consumer applications. To achieve a scalable and modular design, the beamformer
is hierarchical: beamforming is performed in multiple stages. To save further
costs, part of the beamforming stages are performed in the analogue domain with
dedicated hardware, resulting in a hybrid beamformer.

A beamforming platform requires an (adaptive) algorithm to search or track a
signal-of-interest. We will present an overview of beamcontrol algorithms and �nd
that search algorithms are computationally expensive. Yet, we require a beamcon-
trol algorithm with low computational cost so that limited additional hardware is
required. �erefore we present an equalisation algorithm for PSKmodulated signals
which we apply as an adaptive beam-control algorithm with low computational cost.
Furthermore, based on this adaptive beamcontrol algorithm, an algorithm is pre-
sented that, unlike existing algorithms, is also useful for hierarchical beamforming
systems.

�is chapter is organised as follows. First we present an overview of the char-
acteristics of the beamforming application domain in section �.�. �erea�er, in
section �.�, we will present relevant beamforming theory. Next, we will discuss the
system design of a hierarchical hybrid beamforming system, proposed as generic
beamforming platform. Section �.� gives an overview of adaptive algorithm classes
for beamcontrol and presents two novel tracking algorithms, followed by a conclu-
sion.

�.� C��������������

In this section a short overview of the areas relevant to phased array beamforming
systems is given. �is will also be useful for later chapters on architectures for and
design of embedded systems.

��

�.�.
C
��������������

�.�.� Signal processing

A signal, in the sense of signal processing, is a representation of a physical quantity
that varies with time or space, i.e. signals are functions of the independent variable
time and/or space. Signals encode and transfer information. On a single channel,
information can be encoded in the amplitude, frequency and/or phase of a signal.
For example, a speech signal encodes phonetic symbols as well as emphasis etc. as
sections of varying frequency and amplitude.

Multiplexing information into one signal is used to send more information over
a shared medium or channel. Information can be multiplexed over time, frequency
and space or a combination of these.

Signals are generated by sources and consumed by sinks. A system, subsystem
or component responds to or transforms signals, i.e. it performs processing on the
signal. Signal processing can be performed in both the analogue and the digital
domain. Digital signal processing is o�en preferred because it is more �exible
and/or has better accuracy. By continuous signals, continuous-time signals are
meant [��]. Likewise, discrete signals are de�ned for discrete-time (and may well
have continuous values). A digital signal is a discrete-valued discrete-time signal.

�.�.� Streaming data

A stream is an in�nite sequence of data. Signal processing systems o�en operate
on streaming data, because an input signal (as function of time) that is digitised
can be represented as an in�nite stream of data; the samples of the signal. �us, a
digital signal can be represented as streaming data.

�e advantage of a stream representation for signal processing applications is
that it becomes easier to formally analyse and verify the applications [��, ��]. It
can be guaranteed that the application is functionally correct and what kind of
throughput and latency it achieves. �roughput for streams and signal processing is
de�ned as the (average) rate that elements from the stream are processed. Latency
is de�ned as the time delay of an element when being processed.

�ere are two common representations of streaming data [��]. �e �rst is as
an in�nite list; the �rst element of the list is the current data and the remainder of
the list are the future values. Signal processing operations are performed on the
list, i.e the inputs and outputs of an operation are lists. Laziness, i.e. values are only
calculated or retrieved when used, ensures that the whole stream does not need to
be available when used by the operation. A stream as a list can also be represented
as a pair of the current value and a function to get future values, i.e. a linked list.

�e second representation of a stream is a representation as a channel. A channel
is an unbounded �rst-in �rst-out (FIFO) bu�er. New elements are added to the
channel, thereby modifying the channel, and signal processing operations consume
elements from the channel. An advantage of the channel model is that signal
processing operates on single elements at a time, which �ts the conceptual execution
of the signal processing operation, as it progresses over time. A disadvantage is that
a channel does not match the semantics of a discrete time signal, i.e. a sequence of

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

samples over time. �e channel represents a container where samples are put in or
taken out. As such, it is a lower abstraction concerned with memory management.

We propose a di�erent representation: a stream is data that changes over time. It
is therefore close to a DT signal: instead of consisting of samples, the signal consists
of data. In fact, we consider data (elements) to be equivalent to samples, i.e. data is
represented as a (large) number. In other words, a stream is a value that changes
over time. A signal processing operation is just an operation on a value at a certain
time. As a consequence its output is also a value that changes over time or a stream.
An operation on a stream has no notion of time, only of the ordering of data and
the next element to process. It can have state, i.e. its output depends on its history
of inputs. �e state and output of an operation change with a new input value,
irrelevant at which time this is. As such, time is de�ned at a higher level, and is
irrelevant for (the correctness of) the signal processing operation. Summarising,
the same representation of values that change over time is used for DT signals and
streams. We will come back to this in chapter �.

In synchronous languages such as Lustre [��], Lucid, [��], Esterel [��] or Sig-
nal [��], each stream is associated with a (global) “clock”. �e next element of the
streammodels a “clock tick”. With the proposed representation, the value of streams
at a certain time does not necessarily represent the same (global) “current” time or
clock, i.e. time is locally de�ned and relative.

�.�.� Hybrid systems

�e dynamic behaviour of a system is the time-varying evolution of the system. If
the behaviour of such a dynamic system has both continuously changing elements
as well as discrete changes, it is called a hybrid system. As mentioned, embedded
systems interact with their environment, which is typically a continuous system,
while most of the processing is typically in the discrete domain. �erefore, an
embedded system is o�en a hybrid system.

A hybrid system thus includes the CT domain and the DT domain. A domain is
a meta-model that formalises what entities or components in the domain represent
and how they interact.

A system that responds to dynamic behaviour from the environment is called
a reactive system. Signal changes usually indicate events which the system must
react to. A system that must react within a certain time (before its deadline),
while it has no control over when events occur, is called a real-time system. For
real-time (hybrid) systems it is especially important that throughput and latency
constraints are met, as missing a deadline can have severe consequences for the
system’s operation. Models of the system are used to analyse the system’s behaviour
and provide guarantees that constraints can be met. As such, a model, based on
streams, is o�en used [��].

When modelling hybrid systems, the dynamic behaviour of the environment
must be included in the model to verify the dynamic behaviour of the system’s
interaction with the environment. �e signal generation part models the aspects of
the environment that are relevant to generate the input signal of the system. When

��

�.�.
P�����

�����
����

����
���

������

actuators are controlled by the system, they might in�uence the input signal, and
thus the signal generation model, thereby forming a closed loop system.

�.�.� Adaptive algorithms

Adaptive algorithms (automatically) adapt or adjust to the characteristics of an input
signal [�]. As such they are similar to closed-loop control systems; the algorithm
compares the input and the output of an operation with an expected result and
changes the operation on the input signals accordingly. A feedback loop is thus
created by the adaptive changes, or corrections, to the operation on the input signals.

Typical aspects of control engineering and control theory are also relevant here,
such as:

• stability ensures the controlled response converges to the intended e�ect and
stays within bounds,

• responsiveness is the time it takes to reach the intended e�ect,
• overshoot refers to a controlled signal exceeding its intended value.
O�en the feedback control does not need to run at the same speed as the rest

of the signal processing because the dynamic behaviour is slower than the rate of
information. In that case the signals for the control and feedback can be decimated,
i.e. their rate is reduced.

�.� P����� ����� ����������� ������

Beamforming, as the name implies, is about forming an electromagnetic or acoustic
beam into a certain direction, i.e. itmakes a transceiver directional. An (mechanical)
example is a light-beam from a spotlight. Exploiting the directivity of a transceiver is
an obviousway of improving the performance of a radio frequency (RF) system.�is
is because less energy is wasted compared with sending the signal to or receiving
from all directions. Sending only to the direction of the receiver also reduces
distortion to other receivers. Receiving only from the direction of the transmitter
increases the signal-to-noise ratio (SNR) of the receivers. �is larger SNR can be
exploited for energy savings, higher throughput, or less sensitive (simpler) systems,
among others. In this thesis we will mainly focus on receiving systems.

Directivity can be achieved by using a directional antenna, such as a dish antenna
(�gure �.�), or by using multiple antennas in an array as in phased array systems
(�gure �.�). Some options for directional antennas are illustrated in table �.�. Omni-
directional isotropic antennas are hypothetical antennas with an equal directivity in
all directions. Dish and aperture antennas achieve directivity by their shape, while
array antennas achieve directivity by combining signals from the array which is
discussed in more detail below.

Beamsteering (BS) refers to changing the direction of the formed beam. Beam-
steering can be achieved mechanically by moving the antenna, or by changing the
path length from each antenna to the location where the signals are combined in
case of a phased array. Practical reasons allow only a discrete number of di�erent

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

F����� �.�: Directivity by dish antennas F����� �.�: Phased array

T���� �.�: Beamsteering for di�erent antenna options

Antenna Steering

Directional antenna

Omni-directional isotropic -
Parabolic re�ector (dish) Mechanical
Aperture Mechanical

Multi-antenna transceivers

Array
Fixed plane Mechanical

Phased array
Selectable path length Mechanical/Electrical
Delay or phase correction Electrical

Smart antenna
Switched beam Electrical
Adaptive array Electrical

path lengths for the mechanical beamsteering option (for each path length a cable
of a di�erent length is needed) [���]. With electrical beamsteering, this restriction
can be relaxed, allowing faster and more �exible beamsteering. Controlling the
direction of maximum sensitivity of the beam is called beamcontrol (BC).

Following [��], smart antennas refer to systems which determine the DoA of a
signal by using signal processing. Switched beam systems choose between a number
of pre-determined beams, while adaptive arrays allow for complete �exibility in
steering the beam (using adaptive algorithms).

�.�.� Beamforming

In this section we will provide a basic outline of the principle of beamforming and
relevant terminology.

��

�.�.
P�����

�����
����

����
���

������

F����� �.�: Interference pattern

wave front

d

� ∆l

ape
rtu
re

F����� �.�: Wavefront received by multiple
antennas in a phased array

Interference Beamforming is based on the principle of interference. Interference
is the pattern resulting from the addition of two or more (partly) correlated waves.
A famous example is the double-slit experiment in which a light beam is blocked
except for two small slits. �e light a�er the slit is scattered over all directions, i.e. it
is comparable to an omnidirectional antenna. As a result the two scattered light
waves interfere and the resulting pattern a�er the slit has a varying intensity as
illustrated in �gure �.�. At a location where the light waves from each slit arrive
in-phase, the intensity is at its maximum. �is is called constructive interference. At
a location where the light waves are exactly out-of-phase, the intensity is at its lowest.
�is is called destructive interference. �e same can be accomplished electronically
with any two kind of signals by varying phase delays between the signals.

Array A phased array combines the signals from two or more antennas; the array.
Whether the waves add up depends on the location of the antennas. For a uniform
linear array (ULA), the antennas are located on a straight line with uniform spacing
(see �gure �.�). It is therefore a �-dimensional (�D) array. �e uniform spacing
simpli�es a lot of the mathematics [��, ���].

A ULA is only directional in one dimension, the azimuth direction for a ULA
on the x-axis as in �gure �.�. In the dimension orthogonal to this, i.e. in the
elevation directions, the array has no directivity, i.e. it is omni-directional. To
achieve directivity in two dimensions, a �-dimensional (�D) array is needed. A
common �D array is a rectangular planar array, for which the antennas are located
in a uniform grid (as in �gure �.�).

In general, the antennas can be placed anywhere in a �-dimensional (�D) space.
For such arrays, there is no regularity that can be exploited to simplify the mathe-
matics and the signal from each antenna must be calculated individually.

Phased array systems o�en use a coordinate system (r, α, γ) slightly di�erent
from a spherical coordinate system (r, θ , �). �e array is located at the origin of
the coordinate system. �e distance from the origin is still the range, but azimuth
(α) is a clock-wise “horizontal” angle (instead of counter-clockwise) and instead of
an inclination angle from the zenith direction, an elevation (γ) from the horizon is
used. �e azimuth (α) and elevation (γ) are shown in �gure �.�

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

z

y

x

d

r α

γ

F����� �.�: Uniform linear array

z

y

x

d

F����� �.�: Rectangular planar array

Planar wavefront Assume a single omni-directional wave source, emitting a
spherical waveform s in time and space:

s (t, l) = A ⋅ cos�ωt −
�π
λ
l�

with A the amplitude, ω the frequency, λ the wave length, t time and l the path
length (distance) from the source. At a large distance, in the far �eld region, the
wavefront of this source arrives almost at the same time at two relatively closely
placed receivers (antennas) with their plane perpendicular to the direction of the
source, i.e. the path length from the source to each antenna is almost the same. �us,
if we neglect this small error, the wavefront arriving at the receivers can be seen as
planar and the two signals add up constructively. Note that we do not consider the
polarisation of the wave in this thesis.

Directivity �e directivity of an array is dependent on the incident angle (DoA)
of the wavefront. If the wavefront arrives at an angle incident to the array (� in
�gure �.�) the wavefront arrives at di�erent times at distinct antennas, because of
the path length di�erences between the antennas. �is is illustrated in �gure �.�. If
the antennas are placed a distance d apart, and if the DoA of the wavefront is at an
angle �, the wavefront travels a distance

∆l = d ⋅ sin(�)

further to the next antenna. �is translates in a time delay

∆t =
∆l
c
=
d ⋅ sin (�)

c

between the received signals at the antennas (where c is the propagation speed of
radio waves). Depending on the frequency of the wave, this time delay results in a
phase shi� (∆� = ω ⋅ ∆t), giving rise to the term “phased array”. In the general case
the path length between a chosen origin and an antenna element at �p = (x , y, z) for a

��

�.�.
P�����

�����
����

����
���

������

-��

-��

-��

�

-�� -�� -�� -�� � �� �� �� ��

ga
in

(d
B)

incident angle (°)

Main beam Beam width

Sidelobes
Grating lobe

Null

IN
BW

F����� �.�: �D radiation pattern of an �-element �D ULA

source from �d = (r, α, γ) is (calculated with the help of a coordinate transformation
of �d):

l = � �d − �p� =
�

�r ⋅ xd − xp�
�
+ �r ⋅ yd − yp�

�
+ �r ⋅ zd − zp�

�

∆l = �p - �ud = xp ⋅ -xd + yp ⋅ -yd + zp ⋅ -zd
xd = sin (α) ⋅ cos (γ)
yd = cos (α) ⋅ cos (γ)
zd = sin (γ)

where l is the total path length and ∆l is the path length di�erence with respect to
the path length to the origin, determined by the projection of �p on the unit vector
in the direction of �d.

By correcting the path length di�erences between the antennas, we can in�uence
the directivity of the array.

Radiation pattern Phased array beamforming systems use multiple antennas in
an array to make a directional receiver. �e directional sensitivity of the array, i.e.
the gain of the array versus the incident angle, is called a radiation pattern or beam
pattern. A radiation pattern for an �-element ULA is shown in �gure �.�.

A direction of maximum sensitivity is called a beam because of its shape. �e
(half-power) beamwidth (HPBW) is the angular range between both sides of the
beam where the gain is half (−�dB) of its maximum. For a ULA it can be estimated
by [��]:

HPBW (��) ≈ arcsin�sin (��) + �.����
λ
Nd
�

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

F����� �.�: �D radiation pattern

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��

-��

-��

�

angle (°)

time (ms)

ga
in

(d
B)

F����� �.�: �D radiation pattern over time

with �� the steering angle of the beam. �e largest beam is called themain beam. If
there is more than one beam with a maximum gain, the one we are interested in is
the main beam and the others are called grating lobes. �e remaining beams are
called side lobes. �ere are also parts where the gain is very small, i.e. a signal from
that direction is almost completely attenuated. �ose directions are called nulls in
the radiation pattern. �e inter-null beamwidth (INBW) for a ULA is given by [�]:

INBW (��) = arcsin�sin (��) +
λ
dN
� − arcsin�sin (��) −

λ
dN
�

Typically, the intent is to steer the main beam in the direction of the signal
of interest and to place nulls in the direction of interferers. Note that the HPBW
and INBW decrease with an increasing number of antennas N and increase with
the incident angle. As the incident angle increases, the area of the wavefront that
reaches an antenna (the aperture) becomes less (also see �gure �.�). A smaller
(e�ective) area results in a larger HPBW and INBW, i.e. a wider main beam.

Figure �.� shows a �D radiation pattern in a Cartesian coordinate system. Al-
ternatively we can show a �D radiation pattern in a spherical coordinate system as
shown in �gure �.�. Note that there are no grating lobes in this radiation pattern. If
we are steering the beam, it is useful to show how the �D radiation pattern changes
over time. �is is achieved by making time the third dimension of the plot as shown
in �gure �.�.

Element factor In the previous section we assumed that the antennas radiate
or receive the signal from a point source with equal sensitivity, no matter which
direction the signal comes from. Such an antenna is called an isotropic radiator
and is illustrated in �gure �.��. �e gain of an isotropic radiator is de�ned as:

GE (α, γ) = �

A coherent isotropic radiator is a hypothetical device and is not physically realis-
able [���]. However, it is useful as an ideal antenna that does not in�uence the
directivity of the array.

��

�.�.
P�����

�����
����

����
���

������

F����� �.��: sphere radiation pattern F����� �.��: torus radiation pattern

A physically realisable and o�en used antenna is a half-wave dipole antenna. �e
dipole antenna has a uniform gain in azimuth and a half cosine wave cross-section
in elevation, resulting in a torus shaped element factor (shown in �gure �.��):

GE (α, γ) = �cos (γ)�

Array factor �e array factor is the directivity resulting from the phased array
including the applied path length corrections (and assuming isotropic elements).
�e radiation pattern of �gure �.� shows an array factor without any corrections.
�e maximum signal amplitude is received for a wavefront perpendicular to the
array, thus if we correct the path length di�erence between the antennas for the
angle we are interested in, it is as if the wavefront is perpendicular to the array and
the maximum signal amplitude is received when a signal is incident from that angle.
We can determine the sensitivity of an array with equidistant elements into each
direction α by calculating the array factor [��, ���, ���]:

GA(α) =
N
�
i=� e

j� �π
λ�
(N−i)d sin(α)+� i(��)� (�.�)

with N the number of elements, d the distance between elements, λ� the wavelength
in free space and � i the applied correction. In general the array factor is:

GA(α) =
N
�
i=� e

j �πλ� (∆ l i+∆ci)

with ∆li the path length di�erence and ∆ci the correction for antenna i.
Typically, the antennas are placed a distance d = λ�� apart, where λ is the

wavelength of the received signal, as for larger distances grating lobes appear as
shown in �gure �.� with d = �λ��. �e distance (�D array) or area (�D array)
between the outermost elements is the aperture of the array. For a larger aperture
the beamwidth becomes smaller, so a smaller distance than d = λ�� is not preferred.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

-��

-��

-��

�

-�� -�� -�� -�� � �� �� �� ��

ga
in

(d
B)

angle (°)

element factor
N = � aray factor
N = � array factor

N = � radiation pattern

F����� �.��: �D radiation pattern

�e consequence is that for a larger array, i.e. an array with more elements, the
beamwidth becomes smaller and the antenna array becomes more selective. �is is
illustrated in �gure �.�� for N = � antennas and N = � antennas.

�e radiation pattern consists of an element factor and an array factor. As
the element factor is only a directional gain, if all elements are equal, we can sim-
ply multiply its gain with the array factor gain to get the radiation pattern (see
�gure �.��):

G (α, γ) = GE (α, γ) ⋅GA (α, γ)

with GE the element factor and GA the array factor. For simplicity we will assume
an isotropic antenna for the rest of the thesis.

Amplitude and phase taper An amplitude taper is a vector of amplitude cor-
rections (one for each antenna) and is used for controlling the beamshape. It is
comparable to windows for �nite impulse response (FIR) �lters or fast Fourier
transforms (FFTs). For example, we can lower the sidelobes or position a null at the
cost of a larger beamwidth. As an example, a triangular amplitude taper is applied
for the dashed radiation pattern in �gure �.��, indeed resulting in lowered sidelobes
and a widened beam.

From equation (�.�) we �nd that the phase di�erence can be corrected by setting
� i(��) to − �π

λ� (N − i)d sin(��) for steering angle ��. �us, the vector with phase
correction for a ULA, also called a steering vector, is linearly increasing with i.
�erefore such a steering vector is called a linear phase taper (LPT). A phase taper
is used for beamsteering. Figure �.�� shows a main beam steered to �� = −��° and
to �� = ��° for the dashed radiation pattern.

��

�.�.
P�����

�����
����

����
���

������

-��

-��

-��

�

-�� -�� -�� -�� � �� �� �� ��

ga
in

(d
B)

angle (°)

N = �, θ c = −��, Uniform
N = �, θ c = ��, Triangular

F����� �.��: �D radiation pattern

Friis transmission equation �ere are a number of components in a phased
array system that have directional gain. For example we have the transmitting
antenna, the receiving antenna, the channel between them and the array factor, all
contributing a directional gain and possible a phase transfer function. Representing
the gain and phase factor as a complex number we can combine their e�ects by
simply multiplying them.

�e ratio between the transmitted power and the received power, in which
these directional gain factors are included, is given by the radio equation or Friis
equation [���]:

PR
PT
= GT ⋅GC ⋅GR

GC = �
λ

�πr
�

�

with GT the transmitter element factor, GR the receiver element factor, GC the
channel factor and r the range.�e radio equation is valid under idealised conditions
(aligned antennas, small bandwidth, no multi-path e�ects) in free space.

We extend the radio equation to include the path length delay (�π δ l�λ�) of the
channel as a function of the DoA:

G (r, α, γ) = GT (α, γ) ⋅GC (r, α, γ) ⋅GR (α, γ)

GC (r, α, γ) = �
λ

�πr
�

�
e j

�π
λ�

∆ l

�is represents the transfer function from a source to a single antenna. Later we
will use this to combine the signals at a receiver antenna from multiple sources and
to apply a delay correction for the path length di�erence between each source and
antenna element of the receiver.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

�.�.� Beamsteering

In phased arrays there is a path length di�erence in the path from a source to the
di�erent antennas of the array. �is path length di�erence results in time delay
between the antenna signals:

∆t (r, α, γ) =
∆l (r, α, γ)

c

For beamsteering we correct the time delay in a certain direction (α� , γ�) so that
signals from that direction add up coherently:

∆tc = -
∆l (α� , γ�)

c

Consider a delay function Dδ(s), that delays a signal s by δ, with δ i = ∆tc , i . �e
beamformer is then de�ned as:

y =
N
�
i
Dδ i (si)

If the signal is a narrowband signal, this time delay can be approximated with a
phase shi�:

∆� = ω� ⋅ ∆tc

hence by applying the inverse phase shi�, the time delay is corrected. A gain and
phase shi� is typically represented as a weight wi . A phase-shi� based beamformer
applies a correction weight w∗i to each antenna signal si and sums the results:

y =
N
�
i
w∗i ⋅ si =

N
�
i
ai ⋅ e jω∆� i ⋅ si

withw∗i the complex conjugate ofwi . �is can also be represented using as a matrix
multiplication of a weight vector or steering vector �w and a vector of the antenna
signals �s:

y = �wH
⋅ �s

with �wH the Hermitian or conjugate transpose of �w.
For frequencies slightly di�erent than ω the error � is:

�� = (ω� + ∆ω)∆t − ω�∆t = ∆ω∆t

Abetter approximation can be achieved if we apply di�erent phase shi�s for di�erent
frequencies.

Multiple beams can be formed by using the same antenna signals with di�erent
delays or di�erent steering vectors, i.e. we use multiple beamformers on the same
input signal. Each beamformer has its own radiation pattern, which are in the
general case independent (see below). �erefore, a phased array is very �exible:

��

�.�.
P�����

�����
����

����
���

������

with the same array additional beams can be formed and steered, only at the cost of
additional hardware or processing.

�ere are di�erent options for achieving a time delay or phase shi�, which we
will discuss next. In practice all options approximate a time delay (or path length)
to some degree, resulting in a large number of beamformer structures which have
di�erent characteristics. �ey di�er in support for narrowband or wideband signals,
accuracy and complexity [�, ��, ��].

�.�.�.� Time delay

As the time delay exactly corrects the path length di�erence experienced by the
wavefront, it is not dependent on the (frequency of the) transmitted signal. �ere-
fore, any source signal, including wideband signals, can be used. �e disadvantage
is that implementation is di�cult. Note that the time delay can be arbitrary small
as the incident angle becomes closer to �°. �e largest time delay is caused by the
two antennas which are the furthest away and therefore scales with the array size.
Next, we will discuss three options for implementation.

Physical delay �e time delay between antennas can be corrected for by using
di�erent path lengths between the antennas and the location where the signals
are added. For beamsteering, these path lengths must be changeable. �erefore,
many di�erent routes with di�erent path length must be implemented and switched
between. �is makes implementation di�cult and costly.

Time shi�ed sampling Instead of physically changing the path length, one can
also adjust the sample moment of each analogue-to-digital converter (ADC), so-
called time shi�ed sampling. However, as part of the beamforming is performed
by the ADCs of which there is only one per antenna signal, only a single beam is
supported. Furthermore, time-shi�ed sampling ADCs are not standard and require
�ne-grained control of the delay.

Bu�ering and interpolation A di�erent option is to use bu�ers to temporarily
store samples. Such an implementation, as with changeable path lengths, can only
implement a discrete set of time delays. We can approximate an arbitrary time
delay by using interpolation between available samples or by using sampling rate
conversion techniques [��]. However, for small delays, a time approximation by
interpolation is complex and di�cult [��, ��, ���]. In general, the higher the sample
rate the better the delay approximation. One choice for interpolation is to use an all-
pass �lter with a linear group delay [��] (which must be tuneable for steering). �is
�lter can be in the analog domain or the digital domain. In the digital domain, a FIR
�lter can be used, which consists of complex multiplications followed by summing
the results. A FIR �lter corresponds to performing a truncated convolution.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

F����� �.��: FFT based beamforming in elevation

�.�.�.� Phase shi�

A phase shi� can be used to approximate a time delay. A time delay is independent
of the frequency, but the phase shi� resulting from a time delay does change over
frequency. As found before, a �xed phase-shi� equals a time delay only at a single
frequency and the time delay approximation error becomes larger for frequencies
further away. A phase-shi� approximation is therefore only suitable for narrowband
signals. However, its implementation is simpler; we will discuss two options, both
use a complex representation of signals requiring a Hilbert transform.

Complex multiplication When using a complex representation of signals, a
phase shi� is simply a complex multiplication:

a ⋅ e jωt+� ⋅ e j∆�

Phase shi� based beamforming forN antennas consist ofN complexmultiplications
with the steering vector and summing the results, giving a single beam (pattern).
For multiple beams, we just repeat the process with di�erent steering vectors.

Spatial FFT An FFT can be seen as performing N parallel convolutions or �lters
with the same �lter shape. As such, an FFT over the antenna samples performs
a spatial �lter, resulting in N beams. �ese beams have a �xed relative position
and equal shape, i.e. the main beams are non-overlapping as with FFT bins in the
frequency domain. However, they can be calculated in O(Nlog(N)) instead of
O(N�

) for N “normal” beams.
As the main beams are non-overlapping, with each top of a main beam exactly

at the position of a null for all other beams, the resulting radiation pattern resembles
a number of beams stacked next to each other, a so-called fan-of-beams. �is is
illustrated by the lighter beams in �gure �.��. A fan-of-beams is typically used for
searching or scanning. �e darker beams are single beams used for tracking.

�e window (amplitude taper) used for the FFT determines the shape that the
signal is convolved with. Without a window (meaning a rectangular window), this
�lter shape is a sinc function.

��

�.�.
P�����

�����
����

����
���

������

In order to di�erentiate between performing an FFT on a sequence of signals
in time, we will refer to this method as a spatial FFT.

Note that the complex multiplication and spatial FFT can operate on real input
signals, but in that case the result of positive angles overlap with the mirrored
negative angles [��]. To di�erentiate between those, a complex signal must be used.

�.�.�.� Hilbert transform

To di�erentiate between positive and negative angles, the phase-shi� and FFT based
beamformers use complex antenna signals. A complex number is an ordered pair,
which can be seen as a coordinate pair in a complex plane. Euler’s formula relates a
complex number to an orthogonal sine and a cosine pair. A complex signal can thus
be represented by an in-phase version and a ��° phase shi�ed quadrature version
(see [��]).

However, the antenna signals are real. To get a complex representation, a Hilbert
transform, which corresponds to a ��° phase shi� for all frequencies, is performed
on the antenna signals to get the quadrature signal. Together with the original
(in-phase) signal, this gives a complex antenna signal.

A Hilbert transform can be performed with a quadrature mixer (typically in the
analogue domain as we o�en need analogue frequency conversion anyway) or with
a �lter (typically in the digital domain for �exibility, stability and an equal power in
both paths). For an accurate phase shi� over all frequencies the �lter order must be
high, making a Hilbert �lter computationally expensive. �erefore a quadrature
mixer is to be preferred, at the cost of twice as many ADCs, albeit at half the sample
rate [��]. At the same time, it is di�cult to make accurate wide-band quadrature
mixers; resulting phase errors are o�en a reason to employ digital implementations.

�.�.� Delay at baseband

A typical beamforming system contains (frequency) down-conversion of the RF
signal from the channel to a more manageable intermediate frequency (IF), i.e.
baseband, through mixing with a local oscillator (LO). We will discuss how the
time delay (and phase shi�) between the signals from the channel translates to an
equivalent delay at baseband.

If the antennas are at a distance d = λ��, the phase di�erence between two
adjacent antennas is between � and π for a �° to ��° DoA. For a large array the time
delay between the two outer antennas can thus become quite large relative to the
RF frequency, i.e. the time delay is equal to a number of a periods.

However, for beamforming at the IF, this delay translates to a much lower
frequency. At IF we have:

s(t) = Acos(ωt + φ)

sRF(t)sLO(t) =
ARFALO

�
� cos �(ωRF + ωLO)t + (φRF + φLO)�

+ cos �(ωRF − ωLO)t + (φRF − φLO)��

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

For a time delay ∆t and a frequency around RF (ω = ωRF + ∆ω), it follows:

sRF(t) = cos �(ωRF + ∆ω)(t + ∆t) + φRF�

= cos(ωRF t + ∆ωt + ωRF∆t + ∆ω∆t + φRF)

sIF(t) = sRF(t)sLO(t)

= AIF� cos �(ωRF + ∆ω − ωLO)t

+ (ωRF + ∆ω)∆t + (φRF − φLO)� + . . . �

= AIF� cos �(ωRF − ωLO)t + (φRF − φLO) + ∆ωt

+ ωRF∆t + ∆ω∆t� + . . . �

where (ωRF − ωLO) t+(φRF − φLO)+∆ωt is the desired signal, whileωRF∆t+∆ω∆t
is negated by a time delay correction, but only ωRF∆t is negated for a phase delay
correction.

From the above we can make two observations. Firstly, the time delay is the
same at IF as at RF, which means the time delay is small relative to the IF. So a time
delay, as a phase shi�, is transparent to mixing. Note, however, that a time delay
correction at IF, i.e.:

sIF(−∆t) = AIF� cos �(ωRF − ωLO)(−∆t) + ∆ω(−∆t) . . .

indeed corrects the relevant terms, but also includes the term −ωLO(−∆t). �ere-
fore, a time delay correction also comprises an additional phase shi� of the signal.
As the applied time delay correction di�ers per antenna for beamforming, this
phase shi� is also di�erent per antenna signal and should be corrected.

Secondly, a phase shi� correction leaves an error term of ∆ω∆t, which becomes
larger for larger ∆ω, i.e. for a larger bandwidth around the carrier. �us phase shi�
based beamforming is only suitable for signals with a small bandwidth (as we found
in section �.�.�) compared to the RF. Also, there is a constant phase shi� resulting
from the initial phase of the LO (φLO), which should be synchronised among the
antennas, or included in the phase shi� correction.

�.�.� Narrowband and wideband

Narrowband signals have a small fractional bandwidth; the bandwidth of the signal
is small compared to the carrier or median frequency. What is considered to be
“small” depends on the application and allowable errors. We will follow [�] and call
signals with a fractional bandwidth of less than �� narrowband:

fh − fl
(fh+ f l)�� × ���% < �%

��

�.�.
P�����

�����
����

����
���

������

-�� -�� -�� -�� � �� �� �� ��

�
�

�
�

��

-��

-��

-��

�

angle (°)

frequency
(GHz)

ga
in

(d
B)

F����� �.��: Beam squint

with fh the highest and fl the lowest frequency used. Signals with a larger fractional
bandwidth are called wideband. Bandwidth is relevant to beamforming in at least
two ways.

First, the distance d between antennas is �xed, but the phase shi� experienced
for this �xed distance is dependent on frequency. �e distance is set to λ�� to avoid
grating lobes. Furthermore, λ = c�f , so the smallest distance is set for the highest
frequency. As such, lower frequencies have a smaller e�ective area or aperture than
the highest frequency. �is in turn results in a broadening beamwidth and nulls
moving outward for lower frequencies as can be seen in �gure �.��.

Second, if we apply a phase shi� correction for steering the beam, we have seen
that the phase shi� corrects the time delay and thus path length di�erence exactly
for only one frequency. �e larger the di�erence in frequency, i.e. the larger the
bandwidth, the larger the error. �is error can also be interpreted as mispointing
and is called beam-squint; the actual beam direction is di�erent from the intended
direction and changes over frequency as clearly visible in �gure �.��. Beam-squint
does not happen when a time delay correction is used, as a time delay exactly
corrects the path length di�erence independent of the frequency.

As a result, a di�erent de�nition for a narrowband signal can be used. A signal is
narrowband up to the largest bandwidth for which the error with phase-shi� based
beamforming is negligible. What is considered to be “negligible” again depends on
the applications. We will choose an amplitude error of �� or −��dB. Otherwise,
the signal is wideband and needs time delay (approximation) based beamforming.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

�.�.� Phased array system characteristics

From the discussion of the previous section, we can deduce a number of charac-
teristics of phased array systems. We found that an array is most sensitive in the
direction for which the delays at the di�erent antennas are corrected.

Furthermore:
• If we increase the array size (by increasing N or d), the beam-width of the
main beam decreases (HPBW), which results in a higher angular resolution.

• A larger incident angle results in a larger HPBW, i.e. a wider main beam.
• If we achieve a more precise time delay or phase shi� correction for each
antenna, we achieve a higher angular (α,γ) precision, i.e. deeper nulls and
more accurate beam-directions.

• For a higher sampling (measurement) rate, we achieve a better time resolution
and a more accurate steering and therefore signal.

• �e time delay between the antenna signals is transparent to frequency con-
version.

As mentioned, the delay of each antenna must be corrected for. �e two basic
options are:

• a time delay approximation, which is suitable for wideband signals but com-
plex,

• a phase shi� by a complex multiplication, which requires complex signals
but once we have those, the number of generated beams is easily increased at
low computational cost,

For the phase shi� option, we can also compute many beams at once e�ciently
with:

• a spatial FFT, which also needs complex signals but e�ciently computes a
fan-of-beams.

As each beamforming method has advantages and disadvantages it is useful to
support all three of them if enough computational resources are available.

�.� G������ ����������� ��������

In section �.� an overview was presented of the advantages of using phased ar-
ray beamforming. Beamforming can be bene�cial for any radio system, such
as satellite reception, radar, (radio) astronomy or mobile (�G/�G) and wireless
(WLAN/WiMax) communications. However, radar and radio astronomy applica-
tions use large arrays with high cost and low production volume, while mobile and
wireless communication for consumer applications needs to be low-cost. If we can
design a platform that is �exible and modular and therefore generic and scalable,
we can support all these applications with a single generic platform. Such a generic
platform could lower the cost by sharing development and production costs and by
enabling higher production volumes.

��

�.�.
G
������

����
����

���
��������

T���� �.�: Overview of applications where beamforming can be bene�cial

Satellite Radar Radio Mobile and wireless
reception astronomy communications

Number of antennas 256 4096 7392 64
Number of beams 3 20 24 32
Frequency (GHz) 10–13 7–13 0.01–0.24 2–6
Bandwidth (MHz) 50 100 100 1-30
SNR dynamic range (dB) 16 100 70 30
ADC (bits) 4 16 12 10

Figures for radar, radio astronomy and wireless base stations are based on current requirements and
extrapolated to the near future.

In this section we will propose a design for such a generic beamforming plat-
form. �is design will also form the basis of the beamforming systems used in
chapters � and �. We will �rst analyse the above mentioned applications and derive
the requirements of the platform. Next, we will present a system design of a typical
beamforming system, that will form the basis of the generic platform. We aim for
an IC beamformer for cost reasons, which is typically a monolithic component
and therefore not scalable. To achieve a scalable system, we propose a hierarchical
beamformer that splits up beamforming into multiple stages. Finally, we discuss a
hybrid beamformer, for which the beamformer includes analogue stages.

�.�.� Applications

A comparison of the requirements of a beamforming system for satellite reception,
radar, radio astronomy and mobile and wireless communication is given in table �.�
and further discussed below.

Satellite reception Digital television broadcasts are transmitted bymany di�erent
satellites, orbiting in a �xed position with respect to the earth. Satellites are used
to re�ect an uplink signal to a large region on earth. Satellite positions in Europe
range from about ��° to ��° elevation and �° to ��° azimuth. Since a satellite has
to operate for many years in space, it cannot be equipped with batteries and hence
uses solar energy for the transmission. �erefore, the transmitted power is limited.

Satellite systems require line-of-sight between transmitter and receiver. �ere-
fore, multi-path e�ects are assumed to be negligible. A satellite transmits multiple
unique data streams. To maximise the usage of such data streams, multiple TV
programs are compressed and multiplexed in the stream.

�e DVB-S standard [��] speci�es a frequency of ��.�GHz to ��.��GHz, a
maximum SNR of ��dB (−�dB minimum), a channel bandwidth up to ��MHz
(e�ective bandwidth used is ��MHz due to pulse shaping �lter roll-o�) and satel-
lites that are at least �° apart. �e modulation technique used for individual DVB-S
channels is quadrature phase-shi� keying (QPSK). QPSK uses four di�erent phases
to represent transmitted information, equally distributed on the unit circle of the

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

F����� �.��: Phased array in satellite reception F����� �.��: Phased array in radar

complex plane [��]. Each of these four phases represents a symbol, which represents
two data bits. Since the transmission of two subsequent symbols requires instanta-
neous phase shi�s in the transmitted output signal, high frequency components
are introduced. A pulse shaping �lter is used to decrease the e�ects of these phase
shi�s by spreading the signal into a slightly larger frequency band such that the
high frequency components are attenuated.

Conventionally, DVB-S receivers use a parabolic dish antenna, which can be
constructed easily and have a high e�ciency. A dish antenna focuses a wavefront
incoming from a single direction to one focal point. �e disadvantages of satellite
dishes are that they must be aimed mechanically and the dish must be at a �xed
position (stationary), as continuous steering is problematic because of the size of
the dish and wear and tear of the mechanics. �is makes the dish unsuitable for
moving (or o�en relocating) vehicles, such as a car or yacht.

A phased array system can therefore be bene�cial. A mobile environment is
not a problem as it is fully steered electronically. A ��×��=��� element array is
expected to be a reasonable size for cost reasons; a smaller array is not selective
enough, while a larger array requires additional antennas and processing making
the satellite receiver more expensive and therefore less competitive as a consumer
product. As satellites are at least �° apart and we need ��dB SNR, a beamwidth of
��° at −��dB is needed. �is is not possible as the beamwidth with a ��×�� array is
already ��° at ��° elevation and increasing at lower angles. If we allow one grating
lobe (or use � times as many antennas), the beamwidth is small enough down
to ��° elevation. �e phased array size is then about �.�m by �.�m. Broadcasts
from multiple satellites can be received simultaneously by enabling for two or three
independent beams. �is is useful, when multiple users want to receive signals
from di�erent satellites [���].

Radar �e main purpose of radar systems is to detect, locate and follow re�ecting
objects or targets. It is for example used for scanning, tracking or guiding objects.
A typical radar system uses short periods of pulses to scan its environment. Since
the actual moment of transmission is known, the receiver is only used during a
certain time frame shortly a�er the transmission of the pulse. By measuring the

��

�.�.
G
������

����
����

���
��������

F����� �.��: Phased array in radio astronomy (EM-
BRACE)

F����� �.��: Phased array in commu-
nications

time between transmission and reception of the re�ection, the distance to the target
can be calculated.

Phased arrays for radar have been used since the ����s [���]. Current systems
use separate antennas and front-ends produced in specialised processes, making
the antenna front-ends costly because of the relatively low production volumes.
Furthermore, traditionally a large amount of speci�cally designed central processing
is used. �is makes the system neither scalable nor energy e�cient [��].

Future phased array radar systems require a large array size (upto thousands of
antennas), a high SNR (���dB) and a high sample rate (���MHz). We will consider
radar systems using �GHz to ��GHz signals. At each moment in time, there might
be multiple interesting objects in sight. �erefore, tens of objects are scanned or
tracked simultaneously, requiring at least that many independent beams.

Radio astronomy �e aim of radio astronomy is to construct images of celestial
objects. Similar to satellite reception, radio astronomy is a receiver-only application.
�e energy radiated by celestial bodies is picked up and analysed, among others by
doing long-term correlation and integration of the signal. �erefore, the received
signal and steered direction have to be very stable. As the objects of interest are very
distant, the beamwidth must be as narrow as possible and as the received signals
are very weak the antennas must be as sensitive as possible.

Traditionally, very large dish antennas are used. However, structural/mechanical
limitations constrain their size. A phased array is not limited by this constraint. Fur-
thermore, phased arrays can track multiple objects at once and can be dynamically
steered much easier and faster than dish antennas.

�e narrow beamwidth and high stability and sensitivity requires a very large
array with accurately calibrated antenna processing. �e �gures in table �.� are
based on the low frequency array (LOFAR) [��, ��, ��], a phased array for radio
astronomy that is currently being made operational. LOFAR consists of �� stations
with �� antennas each and can create �� simultaneous beams. Note that a larger
SNR allows di�erentiation of strong and weak objects, while more sensitivity and
longer correlation allows for detection of fainter objects.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

Mobile and wireless communications During the last few years, multi-antenna
techniques have been introduced in the latest wireless standards (e.g. IEEE ���.��n).
Such multiple-input multiple-output (MIMO) systems allow for higher channel util-
isation, as their transmission techniques are designed for both spatial and spectral
optimisation. Beamforming is one of the techniques that can be used to optimise
the spatial use of the spectrum. Mobile and wireless communication systems heavily
su�er from multi-path e�ects, which can be reduced with spatial �ltering.

Nowadays, receivers typically use two or three antenna elements atmost. Adding
more antenna elements implies that multiple additional front-ends are to be in-
cluded, which makes a portable receiver less compact and e�cient. For the base
station, however, beamforming is a useful technique as the transmitted power can
be spatially controlled such that the beam is focused at receivers. Additionally,
independent beams can track individual users, limiting interference and energy.

Base station are commercial products for a large volume market, which also
implies that cost is important. �erefore, we assume the number of antennas to
be limited, but with a maximum number of beams for such limited arrays. Most
wireless and mobile communications operate from around �GHz to �GHz, using
up to �MHz bandwidth per channel and up to ��dB SNR [�].

�.�.� Requirements

From the short survey of applications it is evident that there are large di�erences in
array size.�erefore, a generic beamforming platformmust be scalable andmodular.
Beamforming requires a substantial amount of signal processing on streaming data,
but many applications also need to track objects requiring control (e.g. tracking)
algorithms with low computational cost. A generic beamforming platform must
thus be �exible enough to support control algorithms and e�cient enough for
processing the antenna signals. Such a large amount of processing also requires an
energy-e�cient design. �e speci�cations of radar front-ends are su�cient for all
applications if cost can be low enough. �is can be achieved, for example, with a
so�ware-de�ned radio design. In a hierarchical system, beamforming is performed
in multiple stages, reducing the requirements of later stages because interferers can
be reduced in the �rst stages and signals are combined, in each stage, reducing the
number of signals. Analogue beamforming may be used in the �rst stage reducing
the number of needed ADCs and processing, resulting in a hybrid beamforming
system. �e disadvantages of a hierarchical design are distributed control and extra
calibration. Hierarchical and hybrid beamforming and beamcontrol algorithms are
further discussed in this chapter, while a scalable, �exible and e�cient processing
architecture is further discussed in chapter �.

�.�.� System design

In this section we will discuss a basic phased array beamforming system design.
For most applications, the received (RF) signal is at a high carrier frequency up to
��GHz, whichmust be down-converted to an IF for further processing. �is is done

��

�.�.
G
������

����
����

���
��������

by mixing the RF signal with an LO signal [��]. Beamforming can be performed
at several stages in this design, which we will discuss �rst. �en we will present a
block diagram of a typical system and its environment, and a short discussion on
the components of the block diagram.

�.�.�.� Beamforming location

A time delay or phase shi� correction can be performed at all the signal-paths of the
down-conversion step, i.e. at RF, at the LO or at IF. Each location has advantages
and disadvantages [���].

RF beamforming As beamforming combines signals together, RF beamforming
requires fewer down-conversion stages, saving hardware and cost. �e disadvantage
is that design at RF is di�cult and must be fully analogue [��]. Furthermore, the
RF front-ends have to be duplicated for additional beams. For these reasons it is
not considered further in this thesis.

LO beamforming A phase shi� of the signal of interest can also be implemented
by setting the initial phase of the LO for each antenna to its phase correction, i.e.
the initial phases are the steering vector. �e combining of signals is performed at
IF.�e advantage is that the phase shi� operation is out of the main signal path,
thereby not introducing extra noise and distortions. �e disadvantage is that the
timing and distribution of each LO is critical; for correct beamforming, the timing
of all LOs must be synchronous. Also, only a phase shi� correction can be applied,
not a time delay. �erefore, LO beamforming is also not considered further.

IF beamforming Beamforming can also be performed at IF, a�er down-conver-
sion. Timing of the LO is still critical, but now the beamforming is performed at a
lower frequency. However, a disadvantige is that the time delay between the signals
is small relative to the IF, as it is transparent to mixing (see section �.�.�). �e major
advantage of IF beamforming, and also the reason why we choose for IF beamform-
ing, is that the signal can �rst be digitised before beamforming. �is allows for the
�exibility to use the same processing hardware for multiple applications. Digital
beamforming is only feasible at IF, because of the ADC requirements. ADCs with
both a high sampling rate and a high dynamic range (in bits) are either not feasible
or very costly and power hungry, requiring down-conversion before the ADCs [��].

�.�.�.� Block diagram

�e block diagram of a basic beamformer system, based on digital beamforming,
is shown in �gure �.��. �e system consists of two major components: analogue
front-ends and digital processing. �e (relevant) environment of the system also is
shown, illustrating the signal characteristics of the signals received by the antennas.
Signal generation, modelling the environment, is used for verifying the design. �e
components in �gure �.�� are discussed in more detail in the following sections.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

Environment System

Digital processing

SRC

Analogue frontend

A/D APRF

Analogue frontend

A/D APRF

Analogue frontend

A/D APRF
BF

BS

BC

BB SNKBF

BS

BC

BB SNK

F����� �.��: Basic phased array system

�.�.�.� Environment

A phased array receives signals from multiple sources. Some can be considered
signals-of-interest, others are interferers or noise. Combined they form the signals
that are received at the phased array antennas. Signal generation modelling or
emulation is needed during the system design, to test the phased array receiver.

We will consider one or more signal sources. Each transmitted signal travels
over a channel (indicated by thewaves in �gure �.��) to each of the receiver antennas,
thereby experiencing a delay and attenuation and the addition of noise. �us, a
separate channel for each transmitter-receiver combination is used. �e signals
from all channels to a single antenna are combined at that receiver and form the
input for the analogue front-end.

�.�.�.� Analogue front-end

A�er reception at the antenna elements, the RF front-end performs down-con-
version and possibly ampli�cation and image rejection [��]. Next, sampling and
quantisation is performed by an ADC.�e (digital) signals from multiple analogue
front-ends form the input for the digital processing.

�.�.�.� Digital processing

�e digital processing consists of antenna processing (AP) on individual antenna
signals, followed by beamforming processing and further (application dependent)
baseband (BB) processing.

Antenna processing For accurate beamforming, it is important that the gain and
delay of the signal from each antenna is equal (except for the path length di�erence),
i.e. the distortions from the antennas and front-ends should be corrected. To realise
this, antenna processing, e.g. calibration and/or equalisation, is applied.

��

�.�.
G
������

����
����

���
��������

A non-ideal antenna and front-end needs to be �ne-tuned to compensate for
errors occurring due to non-idealities. For example:

• the antenna position and shape might not be as speci�ed,

• the RF front-ends are not perfectly matched and introduce non-linearities,

• LO and ADC clocks may be slightly out of phase.

Calibration consists of a static gain and phase correction, which is determined
by comparing the measured results from a known reference signal to the expected
results. Equalisation is more advanced as it applies a gain and phase correction over
a frequency range, by using a �lter. For distortions that vary over time, we need
periodic calibration or equalisation or we can use adaptive feedback.

As explained in section �.�.�, in some systems a Hilbert transform is needed to
reconstruct the phase information of the sampled signal. An ideal Hilbert transform
is not possible as it is non-causal and of in�nite length [��]. It is approximated with
a FIR �ler, where the minimum order can be determined based on the required
SNR, �lter roll-o� and bandwidth [��].

So, typically for antenna processing a FIR �lter is used. As a �lter is needed for
each antenna, the amount of processing can easily become as large as the beam-
forming itself. However, it is independent of the number of beams that are formed.

Beamforming �e beamforming (BF) processing (beamformer) applies a time
delay or phase shi� correction and sums the signals, or uses an FFT. Note that the
same antenna signals can be used to form multiple beams in di�erent directions
simultaneously. �erefore, for each beam, the antenna signals are combinedwith dif-
ferent correction parameters. �is requires a dedicated instance of the beamformer
and beam control parts for each beam formed simultaneously.

Beamsteering �e BS processing calculates the time delay or phase shi� correc-
tion (as well as the gain) to be applied by each antenna. �e beamsteerer thereby
de�nes the direction and shape of the formed beam.

O�en the beamsteerer is combined with either the beamformer, which has the
advantage that only the shape and direction needs to be communicated while the
correction parameters calculation is local to the beamformer, or with the beamcon-
troller as part of the control algorithm.

Beamcontrol To calculate the correction parameters, the beamsteerer needs to
know inwhich angle (direction) to point the beam (and optionally which beamshape
to use). �is information is provided by the BC processing.

�e beamcontroller processing can simply scan an area, or determine the direc-
tion by searching for a source, for example based on an estimation of the angles of
the strongest sources available, or by tracking a source, for example using adaptive
feedback. Beamcontrol is further discussed in section �.�.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

!t !t !t !t !t !t...

+

!t !t !t...
+ + +

!t
+

!t

F����� �.��: Dividing the beamforming operation into multiple stages

Baseband processing �e beamformer, which has spatially �ltered out the signal-
of-interest, is typically followed by application dependent BB. Typical baseband
processing operations are detection, demodulation, error correction and decoding.

For example, radar baseband processing consists of (matched and Doppler)
�ltering and detection to determine the presence, location and speed of an object.
Another example is the DVB-S applications. A DVB-S satellite signal is QPSK
modulated, and is �ltered by a matched �lter, followed by demodulation and error
correction at baseband [��].

�.�.� Hierarchical beamforming

A beamformer can be split up into multiple stages, so-called hierarchical beamform-
ing. When beamforming is performed in multiple stages, the array is divided into
sub-arrays which are independently beamformed, while the next stage(s) combines
the signals of the subarrays. Such a scheme is illustrated in �gure �.�� for time delay
based beamforming.

Hierarchical beamforming is used to make the beamformer scalable, as a single
monolithic beamforming operation is split up into several smaller beamforming
operations. By normalising the time delays (or phase shi�s) of the sub-array ele-
ments to their �rst element, this element has a zero time delay (also illustrated in
�gure �.��). �erefore, the total number of time delays remains the same for both
the monolithic beamformer and the hierarchical beamformer.

Hierarchical beamforming has a number of advantages. �e beamforming
operation is modular and scalable. Further, the beamforming operation combines
signals, thereby reducing the number of signals and amount of processing for later
stages (assuming the number of beams is less than the number of elements of a
subarray). For a monolithic beamformer, all antenna signals are communicated
to a central location, making it a bottleneck. For a hierarchical beamformer, the
�rst stages can be distributed and moved closer to the antennas, thereby reducing
the communication bottleneck. However, the distributed processing and commu-
nication makes the design more complex. For example, a disadvantage is that the
steering vector from the beamsteerer or the steering angle from the beamcontroller
must be distributed to each stage and sub-array. Furthermore, the time delays or
phase shi�s must be normalised for each stage. Finally, as the �rst stages combine

��

�.�.
G
������

����
����

���
��������

antenna signals, not all antenna signals are available at later stages. �is is an advan-
tage but also a disadvantage if a beamcontrol algorithm computes a steering vector
based on a later stage, as we will then only have weights for the elements of that
stage. We will come back to this in section �.�.

We will assume the subarrays consist of adjacent antenna elements and are all
steered equally. �e sub-arrays are therefore smaller than the original array, so the
main beam and sidelobes are wider. Assume a �×� sub-array with antenna elements
λ�� apart. For the next stage, the signal from the sub-array could as well be from
a single antenna element, as it is already combined into a single signal. However,
these “virtual” antenna elements are four times farther apart in each direction (at
�λ distance) then the original array. �is results in grating lobes for the second and
later stages.

As we will rely on hierarchical beamforming for partitioning the beamforming
application in chapters � and �, it is de�ned formally as follows. Again consider a
delay function Dδ , that delays a signal s by δ. �e delay, like addition and multipli-
cation, can be applied in multiple successive steps, i.e.:

Dδ(s) = Dδ�(Dδ�(s)), where δ = δ� + δ�

Let N be the number of “real” or “virtual” antenna elements and M be the number
of elements in a sub-array or part in the partitioning. Hence, for a beamformer:

� (�s, �δ) =
�
���
�
���
�

∑
N−�
i=� Dδ i (si) , if N < M

∑
M−�
i=� D∆ j �S j� , otherwise

where

�S j = �̂
����→
��u j , �η j�

�u j = [s(j⋅M) . . . s((j+�)⋅M−�)]
�∆ j = δ(j⋅M)
�η j = [� . . . δ((j+�)⋅M−�) − ∆ j]

, for j = �� . . . �
N
M
��

where � is the beamforming operation and �̂ applies the beamforming operation to
each element of a vector.

�e list of signals �s is split into M element sub-vectors if it is larger than M,
forming the sub-arrays of the previous stage. For each sub-array only the time
delays between the elements in the sub-array with respect to a reference element
are corrected, while the time delays between the reference elements are corrected
by the next stage. �erefore �η contains the time delays for the sub-array normalised
to the �rst element. �e results of the sub-arrays (S) are then beamformed with the
delays used for normalisation (∆). Each stage the delays become larger, because
the reference elements are further apart. Also, the number of sub-arrays reduces
each stage as the beamforming combines their signals. �erefore, multi-stage beam-

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

-��
-��
-��
�

-�� -�� -�� -�� � �� �� �� ��

a
First stage

-��
-��
-��
�

-�� -�� -�� -�� � �� �� �� ��

b
Second stage

-��
-��
-��
�

-�� -�� -�� -�� � �� �� �� ��

c
�ird stage

-��
-��
-��
�

-�� -�� -�� -�� � �� �� �� ��
angle (°)

ga
in

(d
B)

d
Combined result

F����� �.��: Beam pattern of multiple stages

forming has a tree-like structure. Note that phase shi� corrections can similarly be
distributed over the stages.

As an example, consider a three stage beamformer for a �� element ULA, i.e.
N = ��. Each stage combines � signals (�� = ��), i.e. M = �. �e beam patterns
of the three stages and their combined result are shown in �gure �.��. �e beam
pattern of the �rst stage is shown in �gure �.��a. As expected, the beam-width of the
�rst stage is large because the aperture of the � elements is small. �e beam pattern
of the second stage (�gure �.��b) shows a smaller beam-width, as the aperture
is increased to a distance of �� elements, and grating lobes, as only � signals are
beamformed. Note that these grating lobes are exactly cancelled by the nulls of the
�rst stage. �e third stage (�gure �.��c) has the same beam-width of the original
��-element array with �� grating lobes, of which �� are “nulled” by the second stage
and � by the �rst stage. �e �nal radiation pattern of all stages combined is shown
in �gure �.��d.

Because the grating lobes of later stages are “nulled” by previous stages, it is
important that the delay corrections are very accurate in the �rst stages so that the
nulls are deep and at the correct position.

��

�.�.
G
������

����
����

���
��������

Environment System

Digital processing

D/A

SRC

Analogue frontend

BF

BS

A/D APRFRF

Analogue frontend

BF

BS

A/D APRFRF

Analogue frontend

BF

BS

A/D APRFRF
BF

BS

BC

BB SNKBF

BS

BC

BB SNK

F����� �.��: Hybrid phased array system

�.�.� Hybrid beamforming

As a consequence of hierarchical beamforming, the �rst stage(s) can be performed
in the analogue domain, while later stages are performed in the digital domain. In
that case, the steering vector or steering angle must also be communicated to the
analogue beamforming stage(s). For the latter option an analogue beamsteerer is
needed. Such a system is shown in �gure �.��. Note that this results in a feedback
loop that crosses multiple domains.

Analogue beamforming �e advantage of analogue beamforming is that antenna
signals are combined before they are digitised, thereby reducing the number of
required ADCs and the processing requirements. On the other hand, analogue
beamforming is less accurate and less �exible than digital beamforming. When the
signals are combined, the signal-of-interest is coherently added, while the noise
is incoherently added, so the SNR increases. �e analogue signals have a limited
SNR, while the digital signals e�ectively have an unlimitedly SNR (by increasing
the word size). Furthermore, analogue beamforming typically allows only a single
beam, as each additional beam requires the same amount of additional hardware,
i.e. supporting a second beam duplicates the analogue beamforming hardware.

Digital beamforming With digital beamforming, beamforming is performed
a�er the ADCs. Digital beamforming at earlier stages increases the number of
required ADCs (although with a lower number of bits per ADC, assuming limited
interferers and for the same SNR at the output), but the system is more �exible.
For example, such a system can support time delay, phase shi�, and FFT based
beamforming (see section �.�.�) as well as di�erent search and track algorithms,
using programmable hardware. Again, each additional beam requires the same
amount of additional processing (except for FFT beamforming). However, process-
ing capacity can be traded between computing more beams, more sophisticated
beamcontrol algorithms, doing nothing to lower energy consumption, or running
other applications, for example.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

Nonetheless, the increased cost (in terms of e.g. money or power consumption)
of an ADC per antenna can be prohibitive. �us, there is a trade-o� between
analogue and digital beamforming and with a generic beamforming platform,
consisting of a hybrid hierarchical beamformer, we can accommodate all these
trade-o�s.

Mixed analogue and digital beamforming �e time delay between antennas can
be very small compared to the sample rate, because the RF is typically much higher
than the sample rate at IF. For example, a �° DoA at ��GHz with d = λ�� results in
a time delay of s in(�°)

� × ��� =�.��ps, while a ���MS�s ADC has a �ns sample period.
�erefore, for a digital time delay based beamformer, interpolation is needed to
approximate time delays smaller than the sample period. Note that because the
DoA can become arbitrary close to �° the time delays can also become arbitrary
small. On the other hand, the maximum delay between the outermost antennas
is much larger; for a ��° DoA at ��GHz and a ���-element ULA, the time delay
between the two outer-most antennas is s in(��°)

� × ��� ⋅ ��� =��.��ns.

Large delays that are a multiple of the sample rate are easy to implement for
a digital beamformer, as they simply require memory elements to bu�er samples.
However, such larger delays are di�cult to implement for an analogue beamformer
(for example with delay lines or time-shi�ed sampling). Hence, the analogue
beamformer and the digital beamformer can nicely complement each other in a
hierarchical design by implementing small delays in the analogue domain and (the
remaining) larger delays in the digital domain.

A digital beamformer can implement both time delay based beamforming
and phase shi� based beamforming, while an analogue beamformer typically only
supports one. For a phase shi� based beamformer, the beamdirection shi�s to larger
angles for lower frequencies, i.e. mispointing or beam squint (see section �.�.�).
For a time delay based beamformer mispointing does not occur. �us, if the �rst
stage is phase shi� based and the second is time delay based, the grating lobes of
the second stage are not accurately cancelled at lower frequencies (and similarly
when the �rst stage is time delay based and the second phase shi� based). If the
�rst stage is time delay based, we can still choose between a time delay solution for
wideband signals or a phase shi� solution at the second stage. If the �rst stage is
phase shi� based, we can no longer (straightforwardly) support wideband signals
with a time delay based second stage. One possibility, which we have not further
explored, could be to use a frequency dependent null placement at the second
stage to match with the frequency dependent grating lobes of the �rst stage. �is is
because for the wider beams at the �rst stages, mispointing is less of an issue (the
error is smaller). If the beamwidth of the �rst stage is wide enough to include the
(wideband) signal-of-interest at its lower frequencies, we can use a beam direction
that is constant over frequency for the later stages (when the beamwidth narrows)
to still support wideband signals.

��

�.�.
B���

�������

�.� B����������

We have proposed a hybrid hierarchical beamforming platform suitable for multiple
applications. All applications require a control algorithm to determine the steering
direction, so that we can scan or search for signals-of-interest or track signals (e.g. to
search or track satellites, targets, celestial bodies ormobile terminals). In this section
we will �rst provide an overview of three classes of beamcontrol algorithms, so
that we can position and evaluate the tracking algorithms of the following sections.
Next we will present an algorithm with a low computational complexity which
we apply for tracking M-PSK modulated signals. M-PSK modulated signals are
used in satellite communications, for example. �is algorithm is not suitable for
hierarchical systems. �erefore an alternative algorithm is developed that can be
used for tracking signals with a hierarchical beamforming system.

�.�.� Beamcontrol algorithm classes

For many applications it is necessary to track signals-of-interest in a mobile environ-
ment; the source or receiver or both can be moving (see section �.�.�). Furthermore,
the initial DoA is o�en not known, thus we must �rst search for signals-of-interest.
Searching and tracking signals is achieved by beamcontrol algorithms.

Beamcontrol algorithms determine the steering direction and optionally the
beamshape.�e algorithm can use a pre-determined steering direction or determine
the direction from the received signals, so-called adaptive beamcontrol algorithms.
We will focus on the latter as the �rst is (relatively) straightforward. An adaptive
beamcontrol algorithmmeasures the received signal, analyses it and applies a control
feedback signal in the form of a steering vector or steering angle (and beamshape).

�ere are � classes of adaptive beamcontrol algorithms [�].
• Temporal reference beamforming algorithms rely on correlation in time be-
tween the received signals and a known reference signal. �e reference signal
is known beforehand and embedded in the signal, such as a training sequence
or pilot signal.

• Spatial reference beamforming algorithms use correlation in space between
the signals received by individual antennas.

• Blind beamforming algorithms rely on structural and statistical properties of
the received signal.

�.�.�.� Temporal reference

A temporal reference algorithm compares the received signals with expected refer-
ence signals and based on that calculates a correction. As such, it can be seen as a
form of calibration or equalisation. A temporal reference algorithm is for example
used in radar to search for hits, as the sent signal (radar pulse) is known. It is
also used in mobile and wireless communication where pilot symbols are used to
synchronise in case of multi-path interference.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

A temporal reference algorithm calculates a correction weight vector �w based
on the cross-correlation �ρ between the antenna signals si(t) and reference signals
ri(t) (with i enumerating the antennas) and the covariance matrix Γ of the antenna
signals [�]:

�w = Γ−� �ρ
Note that because a weight vector is calculated, beamsteering is included in the
algorithm. Computing the cross-correlation �ρ and covariance Γmainly involves
multiply-accumulate (MAC) operations. �e computational complexity in MAC
operations for cross-correlation isO(NK), with N the number of antenna elements
and K the reference signal length. �e covariance matrix and matrix-vector multi-
plication have anO(N�

) complexity, but the algorithm is dominated by the matrix
inversion with complexityO(N �

).

�.�.�.� Spatial reference

A spatial reference algorithm estimates DoAs by comparing the received antenna sig-
nals with each other, followed by a selection of the signal-of-interest (the remaining
signals being interferers). �e major feature of spatial reference algorithms is DoA
estimation, which is useful for searching for the initial location of sources, but also
for tracking if the DoA estimation is performed continuously. �e DoA is estimated
by (spatially) correlating the antenna signals with delayed version corresponding to
a DoA.�is assumes the frequencies of the signals are known and that di�erent
sources are uncorrelated.

A basic DoA estimation algorithm is to scan over all angles and perform peak
detection. Some more sophisticated algorithms are multiple signal classi�cation
(MUSIC), estimation of signal parameters by rotational invariance techniques
(ESPRIT) or maximum likelihood (ML) based techniques [��, ��, ��, ���].

Typically, spatial reference algorithms have a high computational complexity.
For example, the MUSIC algorithm exploits the eigenstructure of the covariance
matrix Γ to calculate the MUSIC spectrum (the power P as a function of the DoA
�) [�]:

P(�) =
�wH
(�)�w(�)

�wH(�)VnVH
n �w(�)

withVn the noise vector, i.e. the vector of the eigenvectors a�er eigendecomposition
of �Γ less the D largest eigenvectors which are considered of the signals-of-interest.

A block diagram of MUSIC is shown in �gure �.��. �e covariance matrix
calculation correlates signals from all the antenna elements and has complexity
O(N�

). �e eigendecomposition is the most complex part and requires an iterative
numerical approximation, such as QR-decomposition [��], requiringO(N �

)MAC
operations [��]. �e spectrum calculation is shown above and consists ofmatrix and
vector products with pre-calculated steering vectors (O(N�

)). �e pre-calculated
steering vectors consist of a steering vectors for each DoAs considered, and are

��

�.�.
B���

�������

Covariance
matrix

Eigen-
decomposition

Spectrum
calculation

Steering
vectors

Peak
selection

�s Γ Vn

�w

DoAs

F����� �.��: MUSIC

expected to be static. Peak selection is a simple search over N angles (O(N)). �us,
complexity is dominated by eigendecomposition [���], and is comparable to the
temporal reference algorithms.

�.�.�.� Blind

Both temporal as well as spatial reference beamforming algorithms requireO(N �
)

of MAC operations. For applications with a ���MS�s sample rate per antenna for
(N =) ��� to ���� antennas, this is not feasible for tracking sources. Of course, the
dynamics of the DoAs is likely much lower than the sample rate, but the number
of antennas and thus the number of operations remains high. Blind beamform-
ing algorithms provide a way to track signals with much lower computational
complexity.

Blind beamforming algorithms, also known as blind deconvolution algorithms,
use known signal characteristics of the received signal a�er beamforming such as a
constant modulus or �xed constellation points in the complex plane. Signal changes
are translated to a weight vector or steering angle, however, the initial angle of the
signal-of-interest must be known. Temporal or spatial reference algorithms can, for
example, be used to search for objects, a�er which they can be tracked with a blind
beamforming algorithm.

To �nd the di�erence between the properties of the received beamformed signal
and the expected properties, a cost function is de�ned. Properties of the received
signal are compared with expected properties using this cost function (O(�)) and
the beamformer is steered into the direction of the lowest cost (O(�)), thereby
iteratively updating the steering vector (O(N)) (hence including the beamsteerer).

As blind beamforming algorithms rely on structural or statistical signal proper-
ties, di�erent algorithms are needed for applications with di�erent signal charac-
teristics (such as the modulation scheme used). �e next section presents a blind
beamforming algorithm that we have developed for tracking signals with constant
modulation points, such as QPSK signals used in DVB-S. Furthermore, in the
following section we will modify this algorithm to provide steering angle updates
instead of a weight vector.

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

R(y)

I(y)

JCMA

F����� �.��: Surface plot of the JCMA cost
function

R(y)

I(y)

JE−CMA

F����� �.��: Surface plot of the JE−CMA cost
function

�.�.� Extended CMA

An algorithm for equalisation of signals with a constant modulus, developed by Go-
dard [��] and independently by Treichler and Agee [���], can be used for blind
beamforming [���]. �is algorithm is called the constant modulus algorithm
(CMA). Xu [���] proposed a phase extension for equalisation of PSK modulated
signals, which we call extended CMA (E-CMA). We apply E-CMA to beamforming
in order to correct modulus and phase deviations caused by the movement of the
source [��]. �is is useful for the DVB-S application (see section �.�.�) which uses
QPSK (�-PSK) signals or for example for radar with PSK modulated pulses.

For example, for the DVB-S application, consider a phased array on a moving
vehicle. With respect to the array, the source signal from a satellite is continuously
moving. Furthermore, as a consumer product, the computational resources required
for continuously tracking the source with a spatial reference algorithm are too large.
Consequently, we propose to use a spatial reference algorithm only to determine the
initial angle, which therefore can take some time, followed by the E-CMA algorithm
to track the source in real-time.

�.�.�.� Constant modulus algorithm

As said, CMA equalises signals with a constant modulus. �erefore, a cost function
is de�ned as the expected deviation of the squared modulus of the signal-of-interest
y from the constant modulus R, and which has minimal cost if �y� = R:

JCMA = E ���y�
�
− R�

�
�

Herein, E represents the expected value.�e cost function is illustrated in �gure �.��.
As can be seen, the lowest cost is at a circle around the origin of the complex plane
which has a constant range or modulus R.

�e beamformer output y = �wH�s is the result of the product of antenna signals
a�er antenna processing (�s) with a correction weight vector (�wH). �e aim of the
CMA algorithm is to update the weights of the steering vector in such a way that
the costs JCMA are minimised. When the source is moving, the beam is slightly

��

�.�.
B���

�������

mispointing as the DoA changes, resulting in a gain or modulus decrease and
therefore a cost increase. Furthermore, interferers vary the modulus of the received
signal. �ese e�ects are compensated by the CMA algorithm.

To minimise costs, a stochastic gradient descent technique with respect to �w is
used in CMA for blind beamforming [���]. �e gradient follows as:

∇�w JCMA = E �� ⋅ ��y�
�
− R� ⋅ ∇�w ��y�� − R��

�y�� = yy∗ = �wH
�s �sH �w

(�.�)

where ∇�w represents the gradient with respect to �w. Using ∇�w ��wH�s �sH �w� =
��s �sH �w [��] gives:

∇�w JCMA = � ⋅ E ���y�
�
− R� ⋅ �s �sH �w� = � ⋅ E ���y�� − R� ⋅ �s y∗�

�e steering vector �w is updated in the direction of the negative gradient to
minimise J:

�w [t + �] = �w [t] − µ∇�w JCMA

Herein, µ determines the convergence rate of the gradient descent.
�is is rewritten as:

�w [t + �] = �w [t] − µ ⋅ ��y [t]�� − R� ⋅ �s [t] y [t]∗

where instantaneous values are used as an approximation of the expected value and
µ absorbs the factor �.

With the resulting weight vector, the phased array is steered by the CMA al-
gorithm, tracking the source. Furthermore, interferers are rejected because they
increase the cost, causing the gradient descent algorithm to adjust the beamshape
to minimum cost.

�.�.�.� Phase extension

An M-PSK modulated signal has a constant amplitude and a uniformly distributed
phase � = �πm

M , with M the number of constellation points. CMA can be improved
by including the phase in the cost function. To include the phase we observe that the
phase constraint M

� � = mπ is equivalent to sin(M� �) = � [���]. �e cost function
then follows as:

JE−CMA = E ���y�
�
− R�

�
� + E ��sin� �

M
�
∠y���

with∠y giving the (polar) angle of y. �e cost function is illustrated in �gure �.��
for QPSK, and showsminima that are not only at a constant modulus but also at one
of four constant angles or phases, corresponding to the constellation points of QPSK.
�us, minimum costs are reached whenever y simultaneously has a modulus �y�

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

and a phase∠y equal to one of the M-PSK symbol phases with modulus R. E-CMA
thus equalises both the modulus and the phase of the signal-of-interest.

Similar to CMA the cost JE−CMA is iteratively minimised using a stochastic
gradient-descent [���], resulting in:

�w [t + �] = �w [t] − µ ⋅ ε ⋅ �s [t]
where

ε =
� j ��y�� − �y��� +M sin (M∠y)

� j ⋅ y

Herein µ again determines the convergence rate, and ε is a scalar correction factor
that is multiplied with the antenna signals �s to compute steering vector updates.

Concerning the computational complexity of E-CMA; N multiplications are
required for the multiplication with �s, and N subtractions for updating �w. �e
remaining operation are scalar operations. E-CMA thus has complexityO(N).

�.�.�.� E-CMA for beamforming

Amoving phased array experiences both translational as rotational movement with
respect to the source.

For a translational movement the antenna elements all experience the same
change in path length and thus time delay from the source. �e beamformed signal
therefore also experiences this time delay. If the array position changes over time
(i.e. it moves), the time delay of the beamformed signal also changes over time.
For a M-PSK signal, this e�ect corresponds to a phase shi� that varies over time.
As such it causes a rotation of the constellation points. Typically, this rotation is
corrected with a de-rotator. However, for E-CMA the rotation causes an increase in
cost which is automatically corrected by the algorithm, eliminating the need for a
de-rotator.

For a rotational movement of the array, the DoA of the source changes (from
the perspective of the array). A rotational movement causes a gain or modulus
decrease because of mispointing.

For a phase reference at the centre of a ULA the array factor is:

Ga(α) =
N
�
i=� e

j��π� d⋅sin(�)
λ �⋅�i− N+�

� �+� i�

With the centre of the array at the origin, translational and rotational movements
are orthogonal e�ects. A translation of the array only causes a rotation of the QPSK
constellation points and no modulus change, while a rotation of the array only
causes a modulus change and no rotation of the QPSK constellation points.

�us, movement of a phased array introduces modulus and phase deviations
in the M-PSK modulated output of the beamformer due to angular mispointing
and a changing path length from the array to the source, respectively. �ese need
to be corrected before the demodulator. E-CMA compensates for those deviations
by altering the steering vector weights of the beamformer.

��

�.�.
B���

�������

-�� -�� -�� -�� � �� �� �� ��
�
�.�
�.�
�.�
�.�
�

-��

-��

-��

�

angle (°)

time (s)

ga
in

(d
B)

F����� �.��: E-CMA radiation pattern for
the vehicle dynamics scenario

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��

-��

-��

�

angle (°)

time (ms)

ga
in

(d
B)

F����� �.��: E-CMA radiation pattern for
the synthetic scenario

�.�.�.� Results

To verify E-CMA, we have modelled the scenario of a ULA on a moving vehicle for
the DVB-S application. A source is QPSK modulated, from which antenna signals
are generated. Phase-shi� based beamforming is used with E-CMA for beamcontrol
and beamsteering. �e beamformer output is demodulated and veri�ed against
symbol errors.

�e translational and rotational movements of the array are based on the vehicle
dynamics of a Renault Clio RL �.� (the vehicle dynamics are discussed in more detail
in [��]) and a synthetic scenario. In both scenarios an �-element ULA is used, a
channel with a SNR of ��dB, and a convergence rate µ of �.��.

For the vehicle dynamics, the car’s velocity is ��km�h (��m�s). In the initial
situation the car is driving towards the source (α = �°, i.e. the steering angle is
�°). At t = �.� second the car is instantaneously steered to ��.�° causing the car
to start turning and the DoA of the source to change. Furthermore, the velocity
towards the source decreases. �e resulting radiation pattern over time is shown
in �gure �.��. �e main beam is following the scenario as described, it is kept at
�° until �.� s, a�er which the car start to turn and the main beam follows. �ere
is a slight gain increase and some irregularities in the beam pattern due to the
E-CMA algorithm, but overall the source is tracked well. �e constellation diagram
of the output symbols is shown in �gure �.��. �e �gure shows a clear separation
between the constellation points in the four quadrants. We have also compared the
output symbols with the input symbols and no symbol errors have occurred for the
�� × ��� symbols simulated from � s to � s. We therefore conclude that E-CMA is
correctly following the trajectory of the car and de-rotating the QPSK symbols.

�e car dynamics are relatively slow compared to the antenna data rate of
��MS�s (complex). For the synthetic scenario a more extreme situation is used;
the velocity is ���km�h (��m�s) and the phased array moves in such a way that an
ideal steering angle would describe a sine wave with a frequency of ��Hz and an
amplitude of ��° azimuth. �e resulting radiation pattern over time is shown in

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

F����� �.��: Constellation diagram of the output symbols

�gure �.��. For this scenario, E-CMA can also successfully track the source without
any symbol errors. Note that the radiation pattern contains somewhat distorted
sidelobes and has less deep nulls than an ideal pattern. �is is because there are no
interferers for this scenario, giving the gradient descent algorithm no incentive to
increase the null depth to reject those.

�e next scenario concerns a hierarchical hybrid array. �e array consists
of a �-element analogue beamformer �rst stage, followed by a �-element digital
beamformer second stage, for a total of �� antenna elements. In general, CMA and
E-CMAuse antenna signals �s to calculate a steering vector �w which consists of a gain
and phase correction for each antenna signal. Assuming the blind beamforming
algorithm is implemented in the digital domain, only the digital antenna signals are
available. �ese “digital” antenna signals consist of the beamformed results of the
analogue stage. For the radiation pattern of the digital stage in case of a hierarchical
beamformer, we expect grating lobes which are cancelled by the radiation pattern
of the analogue stage. However, this means the analogue stage must also be steered,
while the �w of E-CMA contains weights for the “digital” antenna signals. Figure �.��
shows the radiation pattern of the digital stage resulting with E-CMA when the
analogue stage is not steered (i.e. has a constant �° azimuth angle). As we can see,
E-CMA can not follow the source when the azimuth angle becomes larger than the
beam-width of the analogue stage, causing the gain to increase signi�cantly and
causing symbol errors. Figure �.�� shows the same situation with an ideally steered
analogue stage. Now, E-CMA can correctly track the source without symbol errors.

In the next section, we will discuss a version of CMA that calculates a steering
angle instead of a weight vector. As such, we can use this steering angle to steer
both the analogue stage as well as the digital stage.

E-CMA is de�ned for M-PSKmodulated signals. Further work in this direction
could de�ne cost functions for other modulation schemes such as quadrature
amplitude modulation (QAM) and derive a gradient descent minimiser for those
kind of signals.

��

�.�.
B���

�������

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��
-��
-��
�
��
��
��

angle (°)

time (ms)

ga
in

(d
B)

F����� �.��: E-CMA radiation pattern of the
digital stage without steering the analogue
stage

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��

-��

-��

�

angle (°)

time (ms)

ga
in

(d
B)

F����� �.��: E-CMA radiation pattern of
the digital stage with ideal steering of the
analogue stage

�.�.� Angular CMA

Angular CMA (A-CMA) is an adaptation of CMA to provide a steering angle
instead of a weight vector. As we found from the previous section, CMA and E-
CMA take a vector of antenna signals as input to calculate a correction for each
antenna signal. However, not all antenna signals are available in digitised form
in a hybrid hierarchical beamforming system (see section �.�.�). �erefore, only
corrections are provided for the input signal of the digital stage a�er analogue
beamforming is already performed. With a steering angle, a separate beamsteerer
can be used to calculate correction parameters for both the analogue as well as
the digital beamforming stage. More importantly, the steering angle is used to
calculate just the phase taper. �is means the amplitude taper can still be de�ned
independently, unlike the weight vector fromCMA. CMA also has the characteristic
that sometimes just the gain is increased to achieve the expected modulus instead
of steering the beam in the direction of the source, especially when there are no
interferers. �is is problematic because it reduces the SNR while beamsteering with
a phase taper does not.

�e derivation of A-CMA was performed by Blom in [KCR:�]. In this thesis we
will therefore only provide the major steps in the derivation, needed to understand
the general idea. Furthermore, we will apply A-CMA for a hybrid hierarchical
beamformer as an additional contribution.

�.�.�.� Derivation

�e derivation of A-CMA is based on the derivation of CMA: �rst a cost function is
de�ned, then the gradient of the cost function is determined and �nally the gradient
is used with the gradient descent algorithm.

To adapt CMA to calculate a steering angle, the cost function is made dependent
on the angle by using a phase taper as weight vector. �erefore we need the array

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

�

�.�

�.�

�.�

�.�

�

-�� -�� -�� -�� � �� �� �� ��

J A
−C

M
A

angle (°)

F����� �.��: Surface plot of the JA−CMA cost function

structure (i.e. the antenna positions) as the phase taper is dependent on it. In this
work, a ULA is assumed with a LPT.�e resulting weight vector follows as:

�w (θ) = e�(θ)⋅�n = e j �π⋅d sin(θ)
λ ⋅�n , �n = [� . . . (N − �)]T

Next we will de�ne the cost function and apply a gradient descent to derive A-CMA.

Cost function Using the cost function of CMA with the above weight vector we
�nd:

JA−CMA (θ) = E ����w (θ)
H
�s �

�
− R�

�
�

= E
�
��
�
��
�

���e j
�π⋅d sin(θ)

λ ⋅�n
�

H
�s �

�

− R�
��
��
�
��
�

�is cost function is shown in �gure �.�� for d = λ�� and a �° DoA.As can be seen, the
cost function has a global minimum at �° DoA, but also has local minima. �erefore,
the steering angle must stay within the convergence region for the gradient descent
to converge to the global minimum, i.e. the angle must stay between the maxima
surrounding the global minimum.

Because of the �w (θ)H �x term, the cost function is comparable to an (inverted)
radiation pattern. �e convergence region is thus likewise determined by the
physical distance between the two outer-antennas of an array, i.e. it is comparable
to the beamwidth. �e beamwidth of a ULA, and thus the convergence region for
A-CMA with an LPT, is given by the INBW [�]:

INBWθ�=� = � arcsin� λ
dN
�

��

�.�.
B���

�������

Gradient descent �e gradient descent algorithm uses the derivative with respect
to θ of the cost function (using equation (�.�)):

∇θ JA−CMA = E �� ⋅ (�y�
�
− R) ⋅ ∇θ ��e�(θ)⋅�n�H �s �sHe�(θ)⋅�n − R��

Reordering terms and using B(θ) = e�(θ)⋅�n(e�(θ)⋅�n)H gives:

∇θ JA−CMA = � ⋅ E ���y�
�
− R� ⋅ ��sHB′(θ)�s��

where B′(θ) = ∂
∂θ B(θ) can be written as:

B′(θ) =
�
�
�
�
�
�
�

� � (n�−nN−�)�′(θ)e(n�−nN−�)�(θ)
⋮ � ⋮

(nN−�−n�)�′(θ)e(nN−�−n�)�(θ) . . . �

�
�
�
�
�
�
�

�′(θ) = j
�π ⋅ d cos(θ)

λ

As with CMA and E-CMA the angle θ is updated in the direction of the negative
gradient descent using instantaneous values as an approximation of the expected
value:

θ[t + �] = θ[t] − µ ��y [t]�� − R� ⋅ � �s[t]
H
B′(θ[t]) �s[t]�

where µ absorbs the factor �. More details can be found in [KCR:�].
�e computational complexity of A-CMA is then dominated by the computa-

tion of and matrix-vector multiplication with N × N matrix B′(θ) resulting in a
O(N�

) complexity, i.e. more than E-CMA but far less than temporal and spatial
beamforming algorithms.

�.�.�.� Results

We repeat the hierarchical hybrid array scenario of the previous section, but instead
of using an ideal steering vector for the analogue part, we use a LPT based on the
steering angle determined by A-CMA.�e radiation pattern of the analogue beam-
former is shown in �gure �.�� and the radiation pattern of the digital beamformer
is shown in �gure �.��. �e analogue stage consists of � element beamformers and
digital stage is an � element beamformer. �e steering angle is used for both the
analogue and digital stage, resulting in radiation patterns that closely follow the
DoA of the source.

A-CMA operates on only the digital antenna data. �e antenna positions of the
digital “virtual” antennas have a distance d which is larger than λ��. �erefore the
cost function has multiple global minima, comparable to grating lobes. In this case
d = �λ and N = � resulting in a convergence region given by the INBW of:

INBWθ�=� = � arcsin� λ
dN
� = � arcsin�

�
� ⋅ �
� ≈ �°

��

C
��

��
��

�.
A
��
��
��

��
��

��
�
��
�:

��
��

��
��

��
�

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��

-��

-��

�

angle (°)

time (ms)

ga
in

(d
B)

F����� �.��: A-CMA radiation pattern of
the analogue stage

-�� -�� -�� -�� � �� �� �� ��
�
�
�
��
��
��

-��

-��

-��

�

angle (°)

time (ms)

ga
in

(d
B)

F����� �.��: A-CMA radiation pattern of
the digital stage

A LPT is used for derivation by A-CMA, requiring the antenna elements to be
at a �xed distance. A LPT is also used for beamsteering and no gain taper is used.
�erefore, the nulls are well-de�ned but at �xed position. By using a gain taper, the
beam-shape and null positions can be de�ned. It is therefore interesting to further
explore A-CMA based blind beamforming in this direction.

Note that A-CMA does not correct the rotation of the constellation points as
E-CMAdoes, because a steering angle is calculated based on the CMA cost function.
�erefore, the steering angle is only adjusted on the basis of the modulus of �w(θ)H�s
and not the phase. �is steering angle is used to calculate a LPT; de-rotation could
possibly be included as a constant phase o�set for the LPT.

�.� C���������

In this chapter we have presented the application domain of phased array beam-
forming applications. A phased array consists of an array of antennas, the signals
of which are continuously being processed to perform spatial �ltering. As such, a
beamforming application consists of a lot of signal processing on streaming data. As
a larger high-performance streaming signal processing application that is resource
constrained, beamforming applications form a good case study for the design of
future demanding embedded systems.

A generic beamforming platform is proposed to enable beamforming for con-
sumer applications. �is is achieved by lowering the cost of the platform by sharing
development cost and economies of scale. �e generic beamforming platform
consists of an analogue front-end including an ADC for each antenna, and digital
processing consisting of antenna processing (�ltering) for each antenna, followed
by beamforming and baseband processing. �e beamformer applies a time delay
or phase shi� to each antenna signal before summing the signals. �e time delays
or phase shi�s for a certain steering direction are computed by the beamsteerer,
while the steering direction is determined by the beamcontrol processing. �e

��

�.�.
C
���������

beamcontroller introduces adaptivity and feedback, complicating the design. Fur-
thermore, the veri�cation of applications on the platform requires inclusion of the
environment when modelling and simulating the platform.

An analysis of beamforming applications shows large di�erences in array size
and therefore processing requirements. As a consequence, a generic platform that
supports all applications must be modular and scalable to be cost-e�ective. In
addition, the platformmust be �exible enough to support multiple applications and
multiple beamforming methods. �is also involves partitioning the beamformer
into multiple stages to support modular and scalable processing, so-called hierar-
chical beamforming. Furthermore, hybrid beamforming is proposed to further
reduce cost by lowering the number of required analogue front-ends and antenna
processing using analogue beamformers for the �rst stage.

With a phased array system, signals-of-interest can be searched or tracked in a
dynamic scenario, e.g. a satellite is tracked with a phased array on a moving vehicle,
or searching for targets with a radar system. Searching or tracking is performed
by the beamcontrol algorithm. Analysis of beamcontrol algorithms show that
search algorithms are computationally complex. A tracking algorithm based on
structural or statistical properties is less complex, but requires such signals from the
application. �e generic platform should be �exible enough to support switching
between a search algorithm for �nding the initial DoA of a signal-of-interest and
tracking and beamforming a�er that for normal operation.

E-CMA is a tracking algorithmwe have developed forM-PSKmodulated signals,
such as used for DVB-S signals in satellite reception. It is an adaptive algorithm that
updates the steering vector of a phase shi� based beamformer such that the cost of
a cost function is minimised. �e cost function has lowest cost if the constellation
points of the PSK modulated signal have a constant modulus and phase. Modulus
changes are caused by rotational movement of the array, while phase changes are
caused by translational movement. As such, both movements are corrected by the
E-CMA algorithm. E-CMA has low complexity that increases linearly with the
number of antennas. �e algorithm was veri�ed with a scenario of a phased array
on a vehicle that is moving towards the source while turning, and a more extreme
synthetic scenario where the DoA changes over ��°. In both cases E-CMA is able
to successfully track the QPSK modulated source without causing symbol errors.

However, E-CMA is not suitable for a hybrid beamforming system, because it
only computes a steering vector for the digital beamforming stage, which we can
not use for steering the analogue stage. �erefore, the A-CMA tracking algorithm
is developed. A-CMA is an adaptive algorithm that iteratively updates a steering
angle instead of a steering vector. �is is achieved by de�ning a cost function based
on a LPT in the direction of the steering angle. �is steering angle is used to steer
both the analogue stage and the digital stage of the hybrid beamformer. A-CMA
is more complex than E-CMA with a quadratic dependence on the number of
antennas, but it is less complex than search algorithms. A-CMA is veri�ed using the
above synthetic scenario and a hybrid hierarchical array with �-element analogue
beamformers and an �-element digital beamformer, and is successfully able to track
the source.

C������ 3
Tiled recon�gurable architectures for
beamforming

A������� – �e main requirements from the application domain for a generic
beamforming platform are (energy) e�ciency, scalability and �exibility. In this
chapter we explore tiled recon�gurable architectures for beamforming applications.
Scalability is achieved by using a tiled architecture, and e�ciency and �exibility are
achieved using a recon�gurable architecture. �e consequences of mapping a large
application such as beamforming onto an embedded system consisting of a (low-cost)
tiled recon�gurable architecture will be analysed. �erefore, we show the results of
three example implementations; an audio beamformer on a single recon�gurable
tile, a small tiled recon�gurable architecture for a DVB-S beamformer, and a large
conceptual tiled architecture for radio astronomy.

A tiled recon�gurable architecture could provide an e�cient, scalable and �exible
platform for embedded systems. In this chapter we will explore tiled recon�gurable
architectures to investigate whether they are suitable for the application domain
described in chapter �. �ere we proposed a generic phased array beamforming
platform and we concluded that such a platform must be scalable and �exible to
support multiple beamforming applications.

Phased array beamforming techniques have been applied in radar and radio
astronomy systems for many years already. �e design of these systems is mainly
driven by functional requirements (e.g., resolution, sensitivity, response time) where
non-functional requirements (e.g., costs, power consumption) are of secondary
concern [���]. For that reason, no low-cost, low-power systems for more than a
few antennas are available yet. Conventional phased array systems also typically

Parts of this chapter have been published in [KCR:�], [KCR:��] and [KCR:��].

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

use a large amount of dedicated central processing hardware, making the system
neither scalable nor �exible [��].

In consumer applications such as wireless and mobile communications and
satellite receivers, phased array antennas show great promise but their large scale
introduction has been obstructed by the high costs involved. A generic low-cost
beamforming platform could enable phased array beamforming for consumer
applications. �is can be realised by using a scalable architecture that is �exible
enough to support multiple applications, such that the same architecture can be
reused for more applications. A tiled and recon�gurable architecture seems to be a
promising candidate for such an architecture.

Tiled architectures have not been widely used for phased array beamforming
applications yet. �e usage of tiled platforms is until now limited to small and
medium size applications, and it is not clear whether they are usable for large scale
applications as well. We will discuss various aspects of tiled architectures such as
�exibility and scalability, andwe present example implementations for beamforming
on three di�erent architectures: the M������, the LEON S�C, and a concept tiled
architecture. We will �nd that a tiled recon�gurable architecture indeed is suitable
for large scale applications, provided such an application can be partitioned into
components which each �t on one tile. To be able to do so communication has to
be made explicit. We use the data�ow model to express both the partitioning of the
application and the communication between components.

Note that typically multiple applications run simultaneously on a tiled archi-
tecture [��]. As such, applications are distributed over the tiles and care is taken
that adding an application does not interfere with the applications that are already
running, i.e. composability with respect to applications. For the beamforming
applications, a single application runs on the tiled architecture and tasks of the
application are distributed. Resource management such as mapping the application
on the platform is less critical and less dynamic than with multiple applications
and we will perform a manual mapping of the beamforming application on a tiled
architecture.

Concerning recon�gurability we will discuss the possibilities to run various
scenarios of the same application on the same platform. In particular, regarding the
beamforming application we observed that the DoA estimation algorithm is too
expensive to run continuously, so that it is necessary to recon�gure between this
algorithm and less expensive tracking algorithms. As such, with recon�guration
of a tiled architecture, it is well possible to switch between an expensive search
algorithm and a cheaper tracking algorithm.

�.� R����������� ���� ��� ����������� ������

In this section we will discuss the requirements from the application domain that
are relevant to evaluate tiled recon�gurable architectures.

��

�.�.
R�������

��������
���

�����������
���

���

T���� �.�: Complexity per basic operation per sample

Operation Complexity

Antenna processing Filter O (NF)
Beamforming Time delay / Phase shi� O (NFB) /O (NB)
Beamsteering Compute correction vector O (NB)
Beamcontrol E-CMA O (NB)

A-CMA O �N2B�
N : the number of antennas; F : the number of filter taps; B: the number of beams to be formed.

�.�.� Distributed processing

Typical operations that occur in streaming signal processing applications, such
as beamforming, are �rst of all multiply-accumulates (MACs), o�en occurring
in matrix and vector multiplications, or in FFTs. In addition, especially in con-
trol algorithms, such as beamcontrol algorithms, operations such as division and
trigonometric functions are required, but these are much less frequent.

�e number of times that these MAC operations have to be executed is huge,
due to the very high data rates. For example, for radar applications a ���MS�s
sample rate with ��bit samples (≈ ���dB) is used. For ���� antennas, FFT based
beamforming would need ��� ⋅ ��� ⋅ ���� ⋅ �� ≈ ��T operations per second (ops).
For satellite applications with ��×�� antennas, three beams and ���MS�s sample
rate, we would need ��� ⋅ ��� ⋅ � ⋅ ��� ⋅ � ≈ ���G ops with �bit samples (≈ ��dB).

�e most demanding application is probably radio astronomy. LOFAR, for
example, uses polyphase �lter banks with ��-tap FIR �lters and a ����-point FFT
for each of the �� stations, followed by distributed beamforming. Next a polyphase
�lter bank with ��� ��-tap FIR �lters and a ���-point FFT is used for each beam,
followed by a centrally processed correlation, all together totalling ���T ops [��]
(also see section �.�.�).

On the other hand, the complexity of the major operations of a beamforming
system is not big. From table �.� it follows that, e.g. the complexity of the beamsteer-
ing operation is linear in the number of antennas and in the number of beams. Only
for A-CMA beamcontrol, the complexity is quadratic in the number of antennas.
Since the number of beams usually is small, the main factor in the complexity is
the number of antennas.

However, even though the complexity of the individual components is not that
large, the tight time constraints caused by the high data rates, makes that these
operations can not be run on a single processor of limited size. Moreover, the power
consumption of such a processor would be enormous. Since the goal of our work is
to investigate possible architectures which are available for the consumer market, it
is clear that the application has to be partitioned so that the separate parts can be
executed on small and e�cient processors.

�e beamcontrol operation is not executed very o�en and the time constraints
are not very tight. �erefore we choose not to partition this operation (see also

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

chapter �). �e operations that occur most o�en are beamforming and �ltering.
Partitioning of beamforming is described in chapter �, and partitioning of �ltering is
straightforward. Clearly, this partitioning introduces communication; we will come
back to this in section �.�. Nevertheless, the application is suitable to distribute over
di�erent processing components, thus making tiled architectures an appropriate
candidate for beamforming and comparable applications.

�.�.� Communication infrastructure

An important aspect of the architecture is the communication between tiles. �e
tiles are connected by means of a network-on-chip (NoC).�is NoC concept is also
extended to higher hierarchical levels, i.e. to connections between ICs and boards.

Beamforming is an application with a relatively large amount of communication
per computation, putting high demands on the NoC.�e antennas signals have a
sample rate of up to ���MS�s, which requires at least ���MB�s network connec-
tions. To support some �exibility, such as monitoring of data streams or injection of
test or con�guration data as well as some control signals, at least two connections
per link are needed. �e routing of the data-streams changes seldom for the phased
array application, therefore a circuit-switched network is more e�cient avoiding
the overhead of a packet-switched network [���].

�.�.� Flexibility

As already observed in chapter �, a more �exible system is useful for a wider range
of applications reducing cost because of the larger production volume. It would
be bene�cial if the same platform can also be used for high-volume consumer
applications. Secondly, �exibility is needed to face the frequently changing standards,
so that the platform must be adapted to new standards several times during its
life-time.

In the context of beamforming applications it is also advantageous that the
platform is �exible because of the various methods for beamforming. Time delay
based beamforming is suitable for wide-band signals which is, for example, useful
in the case of radar to achieve a higher range resolution for the distance to an
object. On the other hand, time delay based beamforming is computationally more
intensive than phase shi� based beamforming. �e consequence is that phase shi�
beamforming can compute more beams at the same time. However, with phase shi�
beamforming, the bandwidth of the signals must narrower. In addition to these
methods there is also FFT based beamforming, with which many beams can be
computed at the same time, however, they can not be steered independently. �at
means that the preferable method for beamforming depends on the situation and it
is desirable to be able to switch from one method to another.

�e above mentioned switch from one method to another is relatively local. On
a larger scale we also want to be able to switch from searching to tracking. Searching
is necessary to �nd the object of interest, e.g. a satellite for broadcasting. However,
as we found in chapter �, searching is computationally very expensive whereas

��

�.�.
A
�����������

tracking an already found object is much cheaper. In practice, one might want to
change to another satellite, or it is well possible that a satellite position is lost. In
both cases one has to switch from tracking to searching and back.

�.� A�����������

�e need to distribute the beamforming application over simple processors, as well
as the need for e�ciency and �exibility leads to an architecture which consists
of several processors connected by a �exible communication infrastructure. We
choose for a so-called tiled architecture where multiple functional elements are
combined on a SoC and communication proceeds via a NoC. In addition, we choose
for a recon�gurable architecture to keep the execution of the various tasks e�cient
but �exible. Below we will motivate our choices in detail.

�ere are many aspects of tiled architectures that we do not discuss, such
as predictability, composability, types of communication, since these aspects fall
outside the scope of this thesis. We would like to refer to [��, ���] for a discussion
on these issues.

�.�.� Tiled architectures

Below we brie�y discuss �ve aspects of tiled architectures that are of importance
for this thesis.

Scalability First of all the architecture has to be scalable such that it is easily
extendable with additional tiles if, for example, the platform has to be extended for a
bigger number of antennas. For example, for the beamforming applications there is a
wide range in the number of antenna signals to process and the required processing
capacity (from ��� antenna inputs and ���G ops for the DVB-S application to
�� ��� inputs and ���T ops for radio astronomy). Also in case the number of beams
that have to be computed increases, the platformmay have to be extended with extra
processing cores. �e communication network also scales with adding processing
cores, whereas when cores are connected by a bus, scalability is not guaranteed.
Hence, for reasons of scalability a tiled architecture is in our case advisable, themore
so because the needed processing capacity is huge. It is so large that scalability is
needed on multiple (hierarchical) levels, as multiple chips and even multiple boards
are needed: a multiprocessor system-on-chip (MPSoC) is extended to multiple
chips on a board (MCoB) and multiple boards in a system (MBiS).

Dependability A tiled architecture is dependable since in case of broken tiles the
network can be recon�gured such that computation is relocated on di�erent tiles
and communication is rerouted. �us a tiled system allows for graceful degradation.
In case a tile is already broken during the production process of the tiled architecture,
the broken tile may simply be disabled.

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

Heterogeneity Another advantage of a tiled architecture is that the tiles can be
di�erent in nature, i.e. the architecture can be heterogeneous. �is is especially
important in our case of a hybrid system which requires a high performance, such
that tiles which are dedicated for speci�c tasks will be necessary. For example, some
tiles will be analogue front-ends, while others will be processing elements with
dedicated functionality or more general purpose processing elements.

Distributivity On a tiled architecture, the processing is distributed over multi-
ple cores, thereby introducing communication overhead (as communication does
not directly contribute to calculating the result of the application) and sacri�cing
programmability (as data communications have to be taken into account).

E�ciency Smaller cores, such as used on a tiled architecture, are typically more
e�cient as they are simpler, thereby allowing the hardware to be optimised and
faster. Furthermore, using smaller cores with small local memories is more energy
e�cient by exploiting locality of reference [��]. Finally, to be cost-e�ective, it
is useful to use consumer market components, such a generic tiled architecture,
instead of dedicated hardware.

�.�.� Recon�gurable architectures

�e above discussed requirement of �exibility motivates that the architecture has to
be recon�gurable. Recon�gurability exploits the property that for many embedded
systems the functionality is �xed on a time scale much larger than the processing of
individual data elements. �e functionality is captured in a con�guration; control
signals remain �xed for a single con�guration while data signals are processed, thus
o�ering the possibility of e�cient execution. A�er some time the system can be
recon�gured to change (parts of the) functionality [��].

For recon�guring a single tile, we need recon�gurable processing elements. �e
main characteristic is that the operation performed on the data is changed. For
recon�guring a tiled architecture, we also need recon�gurable communication. On
this higher level, the main characteristic is that the �ow of data is changed.

In our case, recon�guration can be applied on multiple levels. On the smallest
scale (with respect to impact as well as passed time) only parameters used for pro-
cessing, such as �lter coe�cients, are changed. �is has no impact on the operations
performed. On a medium scale, the functionality of a single tile can be changed.
In this case the operations performed on the tile are changed, but the data streams
of the architecture are not causing further impact on the rest of the system. For
large scale recon�guration also the data streams between the tiles change, i.e. when
re-mapping or changing the application. For example, for the beamforming appli-
cation, a small scale recon�guration can consist of new beamsteering parameters.
A medium scale recon�guration can be a di�erent mapping of the application or
changing the beamforming or trackingmethod (e.g. due to the weather or mobility).
A large scale recon�guration could consist of changing the beamcontrol algorithm,
using sub-arrays or multi-function radar.

��

�.�.
E������

�����
���

�����
��������������

�������������

�.�.� �e programming challenge

Many-core (tiled) architectures are not easily programmable with traditional pro-
gramming techniques [�]. Distributing or parallelising an application over multiple
cores is therefore mainly a manual process (also see section �.�.�). �us, there
are strong requirements put on the design process. In chapter � we will present a
method to ease the design and use of tiled architectures and to improve the automa-
tisation of parallelising applications with an approach based on a mathematical
speci�cation of an application.

�.� E���������� ���� ����� �������������� �������������

In this section we discuss three examples of beamforming on tiled recon�gurable
architectures. �e �rst example is concerned with beamforming in an audio context,
thus the data rate is rather low. �is example still �ts on one processor, though
recon�gurability is needed because of the necessity to switch between the various
beamforming methods (see section �.�.�). Also the need to switch between search-
ing and tracking motivates that we need a recon�gurable processor. In the �rst
example we therefore choose for the M������, a coarse-grained recon�gurable
processor [��] which is optimised for streaming signal processing operations. �e
M������ is a very long instruction word (VLIW)-like processor with � arithmetic
logic units (ALUs), �� local memories and an interconnect between them. Several
core operations, called kernels, for signal processing applications have been imple-
mented on the M������ [��, ��] and [KCR:�]. For more details see appendix B.

In the second example we discuss a phase shi� based beamformer with E-CMA
based beamcontrol for satellite reception of DVB-S signals. Due to the high data
rate of DVB-S, a single processor is not su�cient anymore. �e only tiled platform
with several recon�gurable processors that was available as a hardware prototype at
that time�, is the LEON S�C, a platform with three M������ processors, a LEON�
processor [�] and a NoC. Still, in order to �t on the LEON S�C, the data rate had
to be reduced.

�e third example deals with LOFAR, a large scale phased array for beamform-
ing in radio astronomy. At present no tiled architecture big enough to handle this
application is available, hence we discuss a conceptual tiled architecture for which
we assume a processing capacity of ���Mops per tile and �� tiles per SoC. It turns
out that for mapping the LOFAR system on such a platform we need ��� SoCs for
each of the �� LOFAR stations.

�.�.� Audio beamforming on a single recon�gurable processor

�is experiment is split in two parts: beamformingmethods on theM������, and
beamcontrol on the M�������.

�At the time of performing this research; recently also the CRISP platform, consisting of � recon�g-
urable processors, became available (see [��, ��])

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

Beamformingmethods Wehave implemented time delay (TD), phase shi� (PS)
and FFT based beamforming on a single M������ [��]. Here, we exploited the
recon�gurability of theM������ to switch between these three methods. For this
experiment an audio beamformer was used consisting of an �-antenna ULA of mi-
crophones.�emicrophone signals are sampled byADCswhich are connected to a
Xilinx Virtex-II Pro Development System �eld-programmable gate array (FPGA)
containing a M������ and a PowerPC processor, where the M������ is used
for executing the beamforming methods and the PowerPC is used for control to
switch between thesemethods. We remark that the TD implementation is based on
a simple �rst order linear interpolation, whereas the PS and FFT implementations
require a ��-tap Hilbert transform �lter and are based on a complex multiplication.
Further details of the implementation fall outside the scope of this text and can be
found in [��].

For recon�guring the M������, its �ve ALUs each have a con�guration mem-
ory which can contain a few con�gurations. Each of those �xes the ALU to a spe-
ci�c combination of operationswhich are repeatedly performedon a streamof data.
In addition, there is a con�guration memory for the communication between the
ALUs such that, for example, they can be pipelined or used in parallel. Switching
between the various beamforming methods now amounts to choosing the right
con�guration setting from the con�guration memories.

Realised on the abovementioned FPGA theM������ runs at ��MHz.�e au-
dio signal is sampled at ��kHz, so there are ��� cycles available per samplewhereas
less than �� cycles are needed (�� for TD, and �� for both PS and FFT), such that
many beams can be formed at the same time. Since the necessary con�gurations
are already available in memory, recon�guration is instantaneous. �ese results
show the feasibility of the M������ for executing the beamforming methods and
recon�guring between them, i.e. a light beamforming application can still be run
on a single recon�gurable processor and no tiled architecture is needed. Previous
research has shown that the M������ is far more energy e�cient than an ARM
processor or an FPGA [��] and [KCR:�].

On the other hand, the implementation on the M������ takes a lot of e�ort,
because of the large number of functional units in combinationwith themulti-layer
structure of the con�gurations causes that the designer is confronted with a large
number of low level details for which, in addition, there are no abstraction mecha-
nisms available. �us programming the M������ is a challenging task. �is is in
accordance with earlier experience [��].

Beamcontrol �e beamforming operation is straightforward; in order to evalu-
ate a more complex algorithm on a recon�gurable processor, such as a beamcon-
trol algorithm, we have implemented the MUSIC algorithm [���]. MUSIC is a spa-
tial reference algorithm that determines the DoA of signals-of-interest by eigen-
decomposition of the covariance matrix of the input signals (for more details see
section �.�.�). �e algorithm is implemented on the M�������, an experimental
architecture based on the M������. It has a comparable amount of functional
units, but aims at higher clock frequencies by connecting more of these units di-

��

�.�.
E������

�����
���

�����
��������������

�������������

T���� �.�: Number of required resources per kernel of MUSIC

Kernel Clock cycles Percentage Time (ms)

Covariance matrix calculation 283 356 18.92 1.41
Eigendecomposition 1 162 128 77.58 5.81
Spectrum calculation 52 048 3.47 0.26
Peak selection 415 0.03 0.00

Total 1 497 947 100 7.49

rectly to the interconnect. However, we expect that the di�erences between imple-
mentations on the M������ and the M������� are negligible.

�e di�erent kernels of theMUSIC algorithm (see table �.�) were implemented
and run sequentially on a single M�������. �e eigendecomposition is numeri-
cally approximated with an implementation of the QR algorithm and is by far the
most complex. �e results for an antenna array of �� elements and the M�������
running at ���MHz are shown in table �.�. �e conclusion from this table is that
a single M������� is su�cient to compute the DoA. However, since only �� an-
tennas were used, the angular resolution is too low for the applications considered
(requiring at least ��� antennas). Since the complexity of the MUSIC algorithm
is N �, with N for the number of antennas, the limits of the M������� will be
reached quickly. Hence, a single M������ or M������� will not be enough for
beamcontrol when the angular resolution requires a larger number of antennas.

�.�.� A tiled recon�gurable architecture for a DVB-S beamformer

We have implemented an adaptive beamformer on the LEON S�C platform [��].
It is based on the DVB-S application and includes an �-element beamformer and
E-CMAbased adaptive beamcontrol for a single beam. Furthermore, a ��-taps FIR
�lter was included for baseband processing of the QPSK modulated signals.

�e LEON S�C platform consists of a LEON� processor [�] and three M��-
����s as shown in �gure �.�. �e LEON� is used for control tasks such as resource
management and interfacing. �e advanced high-performance bus (AHB)-bus
connects the LEON� to memory and to the serial and USB interfaces. �e USB
interface is also directly connected to the NoC to support streaming data over USB.
In addition, the AHB-bridge connects the LEON� and the peripherals to the NoC.

For the communication between theM������processors, a predictable circuit-
switchedNoC is used [���]. Each network link between a router and another router
or processor consists of four parallel ��bit lanes that can be used simultaneously
such that a high communication bandwidth between the tiles is achieved.�eNoC
is con�gured via a dedicated con�guration interface which is accessed through the
memory map of the AHB bridge.

�e LEON S�C is realised on a Xilinx Virtex-� LX��� FPGA. For this proto-
type realisation, the LEON� processor and the NoC operate at ��.��MHz, result-
ing in a bandwidth of about ���MB�s for each link. �e three M������ proces-

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

Router � Router �M������ �

M������ �

M������ �

USB AHB bridge

cfg cfg

1 3 3 1

0

2 2

�to USB host�

Serial I/O LEON�ROM ��� MB
DDR�

�AHB bus�
�serial�

F����� �.�: LEON SoC

sors operate at ��.��MHz. �e M������s are rarely stalled waiting for data, since
theNoC operates at three times the frequency of aM������. Besides, aM������
can compute in parallel with communication over the network.

An application speci�c integrated circuit (ASIC) realisation of a similar archi-
tecture, consisting of an ARM-��� processor and fourM������s, exists in ���nm
technology [��, ��].

�e beamforming and baseband processing is running on two of the M��-
����s and E-CMA is running on the third. As the DoA is changing at a much
lower frequency than the sample rate, the beamcontrol algorithm is run only every
�� samples.�e thirdM������ is therefore idlemost of the time.�e LEON� con-
�gures the NoC andM������s during the initialisation phase, and it recon�gures
the NoC during operation.

�e experimental realisation on the abovementioned FPGA can process about
�.�MS�s, approximately one thirtieth of the ��MS�s which are actually required
for the DVB-S application. Besides, only eight antennas were assumed, where ���
would bemore realistic. Hence, this platform is insu�cient for the implementation
of beamforming for DVB-S. Even an ASIC realisation of the LEON S�C platform
will allow theM������s to run at a frequency that is approximately only ten times
higher, so the conclusion is that for a DVB-S beamformer more than three M��-
����s are required.

More details about the implementation can be found in chapter � and [��, ��].

��

�.�.
E������

�����
���

�����
��������������

�������������

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,� Tile�,�

F����� �.�: Concept architecture

�.�.� A conceptual tiled architecture for radio astronomy

From the previous sections it followed that a single recon�gurable processor can
handle a light beamforming application, but for heavier applications more proces-
sors are needed. In particular for the generic system for satellite reception, radar,
radio astronomy and wireless and mobile communication, as de�ned in chapter �,
the architectures as discussed in the previous sections will be far too small.

In this section we introduce a concept architecture for the radio astronomy
application LOFAR. �is concept architecture is homogeneous and hierarchical,
consisting of �� processing tiles per SoC (shown in �gure �.�) and �� SoCs per
board. Each tile can compute ���Mops performingMACoperations.�e on-chip
interconnect has a capacity of ���MB�s (full-duplex), while o�-chip connections
have a bandwidth of �GB�s. �ese are quite realistic �gures; in the EU CRISP
project a chip with � similar cores running at ���MHz was developed [��, ��].

LOFAR LOFAR is a phased array for radio astronomy applications at low fre-
quencies (shown in �gure �.�). As explained in section �.�.�, it consists of �� sta-
tions with �� antennas each. Each analogue front-end can select between a low
band from ��MHz to ��MHz or a high band from ���MHz to ���MHz. Direct
digital conversion with a ��bit ���MHz ADC is used allowing simple front-ends
without mixers and improving the performance [��].

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

F����� �.�: LOFAR station

Station

analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
beamformer

stage �

polyphase
�lter bank

Station

analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
beamformer

stage �

polyphase
�lter bank

Station

analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
analogue
front-end A/D polyphase

�lter bank
beamformer

stage �

polyphase
�lter bank

beamformer correlator

stage �

F����� �.�: LOFAR processing chain

�e processing chain is based on a Fourier transform followed by beamform-
ing, in turn followed by correlation. All three techniques provide selectivity in
their own domain, i.e. Fourier transform in the frequency domain, beamforming
in the spatial domain, and correlation in the time domain. In LOFAR the original
Fourier transform is replaced by a polyphase �lterbank, where a polyphase �lter
bank consists of a decimation over a bank of FIR �lters, followed by an FFT.

�e (simpli�ed) LOFAR processing chain is shown in �gure �.�.�e polyphase
�lterbanks followed by beamforming are performed in two stages to realise hierar-
chical beamforming. �e �rst stage is per station (�� antennas per station), the
second stage combines the signals from all stations. In the �rst stage there is a
polyphase �lterbank for each antenna which splits the antenna signal into ��� sub-
bands, of which ��� are selected. Each polyphase �lterbank uses ���� ��-tap FIR
�lters and a ����-point FFT, where the negative frequencies are thrown away result-
ing in ��� sub-bands. For each station of �� antennas the results of the polyphase
�lterbanks are beamformed in a maximum of �� beams.

In the second stage the polyphase �lterbank splits the resulting signals into ���
sub-bands of about �kHz each, a�er which the beamformer combines the signals
of all stations. Finally, the resulting signal is correlated.

��

�.�.
E������

�����
���

�����
��������������

�������������

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

�, � �, � �, � �, � �, � �, � �, � �, �

��MB/s ��MB/s

FIR� FIR�

��MB/s ��MB/s

FIR� FIR�

��MB/s ��MB/s

FIR� FIR�

��MB/s ��MB/s

FIR� FIR�

��MB/s ��MB/s

FIR� FIR�

��MB/s ��MB/s

FIR�� FIR��

��MB/s ��MB/s

FIR�� FIR��

��MB/s ��MB/s

FIR�� FIR��

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT�� FFT��

��MB/s ��MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

FFT���

���MB/s

���M
B/s

FFT���

���MB/s

���M
B/s

FFT���

���MB/s

���M
B/s

FFT���

���MB/s

���M
B/s

FFT ���
�

��
�M

B/
s

���M
B/s��

�M
B/
s

FFT ���
�

��
�M

B/
s

FFT ���
�

��
�M

B/
s

FFT ���
�

���M
B/s��

�M
B/
s

��
�M

B/
s

FFT ����
�

���MB/s

��
�M

B/
s

��
�M

B/
s

��
�M

B/
s

FFT ����
�

���MB/s

��
�M

B/
s

FFT ����
�

���MB/s

���M
B/s

���M
B/s

���M
B/s

FFT ����
�

���MB/s

���M
B/s

���M
B/s

BFst�

���MB/s

�×�
�M

B/
s

�×�
�M

B/
s

�×��MB/s

��MB/s

�×��MB/s

F����� �.�: LOFAR mapping for each antenna

Mapping Wehavemapped the processing chain for LOFARonour concept archi-
tecture [��]. �e mapping of the �rst stage is shown in �gure �.�. Each tile in our
concept architecture has su�cient processing capacity to calculate �� FIR �lters
per sample, such that �� tiles are needed for all ���� FIR �lters for each polyphase
�lterbank. To distribute the ����-point FFT, �� tiles are needed.

Concerning the communication bandwidth, each link has a ���MB�s capacity
in each direction. �e actual bandwidth which is needed is indicated in �gure �.�.
As can be seen, there are two links where the maximum capacity is reached.

Such a SoC is required for each antenna of a station, resulting in �� SoCs. Fi-
nally we remark that the beamformer (BF) is distributed over all these �� SoCs
plus four extra SoCs to combine the results of the �� outputs of the distributed
beamformer.

Without going into details we remark that the data reduction of the �rst stage is
so big that the second stage can also be executed by the four extra tiles mentioned
above. �e end result is a single beam. For the correlation another SoC per station
is needed. For further details, see [��, ��, ��, ��].

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

In total each station requires ��� SoCs (� for each antenna, � for the later stages
and � for correlation) each having �� tiles with ���Mops, giving each station a
processing capacity of ���⋅��⋅��� ≈ �.�T ops. With �� stations, the total processing
power is �� ⋅ �.� ≈ ���T ops. About another ��T ops are needed for computing
maximally �� beams, and for post-processing and control [��].

It turned out that themapping of the computations is relatively straightforward,
whereas the mapping of the communication is more di�cult because there are
many data-streams at di�erent rates which must be synchronised. Besides, some
of these data rates are close to the maximum capacity of the network links. For
these reasons we performed a simulation of the communication infrastructure of
our conceptual tiled architecture.

Simulation On tiled architectures, computations are distributed, thereby requir-
ing communication. We have simulated the communication infrastructure in the
tiled concept architecture in SystemC [��]. It uses FIFO bu�ers and back-pressure
(full bu�ers stall the computation) for ordering and synchronisation, and for decou-
pling the sample rates of ADC tiles (that represent the antenna input signals) and
the clock speed of the NoC. �e use of FIFO communication and back-pressure
are based on concepts from data�ow process networks (PNs). We will come back
to this during the discussion below.

In this simulation we tested three scenarios. In the �rst scenario we simulated
the decoupling of the sample rate of the ADC from the clock speed of the NoC.
�e simulation was performed with ���MS�s ADCs and a NoC clock speed of
���MHz, ���MHz, ���MHz and ���MHz. Note that the ADCs produce ��bit
samples and the NoC operates on ��bit words, so there is enough bandwidth in
all four speeds. In the �rst two cases, the rates are the same or an even multiple
requiring no decoupling. In the last two cases the rates are di�erent, requiring
bu�er space to handle the delay when the clocks do not match. In all cases the
FIFO bu�ers successfully decoupled the data rates.

�e second scenario connects four ADCs to a single processing tile. �e �rst
connection uses �ve hops, the second four and the third and fourth use two hops.
�e ADCs again run at ���MS�s and the NoC at ���MHz. In the test scenario the
bu�er spaces were large enough to successfully stream data to the processing tile,
be it that shorter paths needmore bu�er space to delay the samples until the sample
from the longest path arrives. �us, the bu�ers synchronise the data streams at the
processing tile.

In the third scenario, con�guration data is periodically added to the data stream
varying the data rate. By adding the con�guration data to the data streams, the
processing tiles recon�gure as the data �ows through the system ensuring all tiles
recon�gure with respect to the same sample. �is avoids the computation of use-
less data because the system is computing results that are half processed in one
con�guration and half in the next. Results show that spare network and process-
ing capacity successfully deals with the varying data rate and the recon�gurations
are synchronised with the data.

��

�.�.
C
���������

�.�.� Discussion

�e experiments show a large number of tiles are needed, i.e. even for the smallest
application (DVB-S) we need much more than three tiles (at least �� times more
to process ��� instead of � antennas, and that is assuming a single tile can handle
the data-rate of DVB-S).

�e tiles provide modular building blocks which are used in combination with
a NoC to extend the architecture with additional processing capacity. �e recon�g-
urability provides �exibility. Yet, a tiled recon�gurable architecture requires that
the application is partitioned so that it can be mapped on the SoC and that com-
munication is explicit so that it can be mapped on the NoC.

In order to support the partitioning of applications and to reduce the e�ort of
managing communications, thereby improving programability, the use of data�ow
models is proposed. An introduction to data�ow is provided in appendix A; here
we only mention the relevant properties of data�ow models.

A partitioned application is represented as a set of data�ow processes, con-
nected by channels. �us, processes represent computation and channels repre-
sent communication. Such a representation facilitates mapping the partitioned
application (the processes) onto a SoC. Processes can only have explicit commu-
nication via channels, i.e. they can not have shared state. For the beamforming
application, shared state introduces a central bottleneck to thememory requiring a
huge amount of bandwidth because of the high data rates of the processed streams,
and should therefore be avoided. Additionally, the explicit communication facili-
tates mapping the communication streams onto the NoC. For beamforming, data
streams must be synchronised so that the correct data (data with the same sam-
ple time) is beamformed, even though the data can take di�erent routes through
the network thereby experiencing di�erent delays. In addition, managing data be-
comes easier if the data can be assumed to be in-order and that no data loss occurs
during communication. �ese properties are provided by the channels, as data in
the channels remains ordered and if a channel is empty a process is stalled thereby
synchronising the inputs of a process until all input data is available. �ese data-
�ow concepts were already used above in section �.�.� to decouple data rates and to
synchronise data streams. In summary, the use of data�ow models forces the use
of ordered data and separate state at the applications level, thereby allowing the
application to be partitioned and mapped on a tiled recon�gurable architecture. A
further more detailed motivation for the use of data�ow in embedded systems is
given in section �.�.�.

�.� C���������

In this chapter we have explored tiled recon�gurable architectures for the appli-
cation domain of beamforming applications. Resulting from the requirement of a
generic beamforming platform, we �nd that such an architecture must support dis-
tributed processing as the large number of antennas (over ���) and high data-rate
(over ��MS�s) of the beamforming applications do not allow enough time to pro-

��

C
��

��
��

�.
T�
��
�
��
��

��
��
��

��
��

��
��

��
��

��
��
��

��
��
��

��
��

��
�

cess all computations on a single processor. Furthermore, with such high-data rate
streams, even with distributed processing, each processor can compute only a few
operations before the next sample arrives, thus there is a relatively large amount of
communication per computation. Finally, the architecture must provide enough
�exibility to execute the various beamforming applications, as well as the di�erent
beamforming methods and the ability to switch between searching and tracking
algorithms.

Tiled recon�gurable architectures possess scalability, �exibility, and e�ciency.
As such, they could provide a suitable architecture for a generic beamforming plat-
form.

�ree experimentswith beamforming on tiled recon�gurable architectures con-
�rm the above characteristics. As a �rst example, we have implemented audio
beamforming on a single recon�gurable tile, supporting multiple beamforming
methods by recon�guration, and a beamcontrol algorithm. �us, recon�gurabil-
ity provides su�cient �exibility, but for the applications presented in chapter � a
single tile is not enough. �e second example implements a beamformer for the
DVB-S application on an architecture with three recon�gurable tiles. From this
implementation it follows that beamforming can successfully be partitioned over
multiple tiles with a beamcontrol running on another tile. However, available re-
alised tiled architectures are too small for even the smallest of the beamforming
applications. �erefore, the third example is a conceptual tiled architecture for
a large radio astronomy application, LOFAR. �e architecture consists of �� tiles,
that can perform ���Mops each, and full-duplex ���MB�s network links. LOFAR
requires ��� SoCs for each of its �� stations, totalling ���T ops. �e partitioning
andmapping of the computations for LOFAR is relatively straightforward, however,
mapping the data streams that are communicated is more di�cult because there
are many data streams at di�erent rates which must be routed and synchronised.

We conclude from the above experiments that a tiled architecture does provide
the necessary scalability and �exibility, but that a large number of tiles are needed
for the beamforming applications presented in chapter �. A second conclusion is
that executing a large beamforming application on a tiled architecture requires par-
titioning of the application and thereby explicit management of communication.
Furthermore, the implementation on the used recon�gurable processor requires a
lot of programming e�ort.

�e data�ow domain provides a useful model for partitioning; processes rep-
resent parts of the applications and channels represent explicit communication.
Furthermore, FIFO-bu�ers as an implementation of channels provide ordering of
data, synchronisation and decoupling of data rates.�ese features can be exploited
to add con�guration data to data-streams, thereby synchronising recon�guration
with the data stream, which was veri�ed for the last experimental architecture.

C������ 4
Model-based design of multi-domain
systems

A������� – �e complexity of designing embedded systems requires a uni�ed
model-based design approach. Analysis of the application domain has shown that
we need a mixed CT and DT model to include the environment and analogue hard-
ware for veri�cation. Furthermore, the choice for a tiled architecture necessitates
partitioning the application, for which we use the DF domain. In this chapter we
will present a uni�ed perspective on signals and components for these domains.
�ere are many tools for mixed-domain modelling, but current tools have problems
modelling time. Furthermore, a survey of existing tools shows there are no tools
supporting model-based design with model transformations for the CT, DT and DF
domain. �erefore, we will propose such an approach called U��T�. U��T� is based
on mathematical de�nitions of models to support uni�ed mixed-domain modelling,
including exact time delay components and model transformations. It is supported
by a design-�ow that uses these model-transformations to transform a (formal)
speci�cation into a division over the environment, the architecture (analogue and
digital hardware) and the application (so�ware), as well as a partitioning of the
so�ware over a tiled architecture.

Designing, modelling and verifying embedded systems is a big challenge; one of
the key problems being the interaction of the system with the physical world (its
environment) leading to di�erent views on for example time. A second problem
consists of the strong requirements concerning the correctness (the behaviour of
the system adheres to the speci�cation) and robustness (coping with errors and
unexpected inputs from the environment) of the hardware and so�ware. Conse-
quently, the need to design embedded systems in an integrated fashion, including

Parts of this chapter have been published in [KCR:�], [KCR:�], [KCR:��] and [KCR:��].

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

that veri�able correctness, is widely recognised [��, ��, ��]. Furthermore, when
designing such complex systems it is useful to apply model-based design, i.e. the
iterative and incremental development of a single referencemodel, because it short-
ens the design cycles and integration is part of the design process early on.

A speci�cation of an embedded system describes its functional behaviour and
a set of requirements. For a design process based on model-based design, such a
speci�cation typically includes a formal speci�cation of the functional behaviour.
Such a formal speci�cation forms the initial model for the design process.

In this chapter we will �rst motivate the need for model-based design in more
detail. Such a model-based design approach needs support for multiple domains.
�is includes exact modelling of the CT domain to support the interaction of an
embedded system with the environment (among others), as we have found for the
phased array beamforming application in chapter �. Furthermore, the DF domain
needs to be included for modelling applications running on a multi-core SoC with
a NoC, as we found in chapter � for beamforming applications on a tiled recon�g-
urable architecture. Finally, as the starting point is a formal speci�cation, it very
useful to be able to de�ne models using mathematical de�nitions.

�erea�er in section �.�, we will discuss signals and components in mixed do-
main systems and we will present a uni�ed perspective on signals and components
based on time for the CT, DT andDF domain, including their interaction. Current
mixed-domain modelling tools perform simulations by discretising a global (sim-
ulation) time and advancing the simulation by passing values betweenmodel com-
ponents at each time step.�is introduces inaccuracies when time transformations
such as time delays are used, which is analysed in detail in section �.�.

A survey of current modelling tools is presented in section �.�. As we will see,
there are no tools supporting model-based design using mathematical de�nitions
and model transformations, and supporting the CT, DT and DF domain, nor are
there tools providing exact modelling of time transformations in the CT domain.
�erefore, U��T� is proposed in section �.�, a design �ow and modelling and sim-
ulation framework that does support all these aspects. U��T� forms the basis of a
design �ow that uses model transformations for the design steps in section �.�.

�.� M���������

�e complexity of today’s embedded systems requires a simultaneous considera-
tion of the environment, the hardware and the so�ware when designing the system.
�is includes aspects such as channels, an analogue front-end and digital process-
ing, but also concurrency and robustness of the so�ware. All these aspects are o�en
interdependent and thusmust be simulated and veri�ed in a single model. Such an
approach is supported bymodel-based design, which is presented �rst, followed by
a discussion on the necessity to integrate the environment, and by an elaboration
of the usefulness of the data�ow domain for modelling so�ware. Finally, we will
motivate the usefulness of mathematically de�ned models.

��

�.�.
M
���������

�.�.� Model-based design

In this section we will motivate the need for a single model and a model-based
design approach that iteratively develops this model with transformational design
steps.

�.�.�.� Systems engineering

A typical design approach for complex multi-domain systems such as embedded
systems is systems engineering [��]. Systems engineering is a design approach
which aims at using a holistic view with a life-cycle orientation that addresses all
phases of the system design. �roughout the design it attempts to unify all in-
volved contributors into an interdisciplinary e�ort. It uses well de�ned and spec-
i�ed system requirements which can be veri�ed and validated down to a detailed
implementation.

System design is greatly aided by the use of models, which provide an abstrac-
tion at di�erent levels of detail or functionality. �e models can also complement
each other by providing di�erent views of the system.

An o�en advocated method that �ts the systems engineering approach well
is model-based design [��]. Traditional design follows the waterfall model [��],
which has the disadvantage that the next design phase has to wait for the previ-
ous to �nish and therefore making changes late in the design cycle very costly. �e
incremental and iterative design steps ofmodel-based design addresses these short-
comings by integrating part of the design as soon as possible and re�ning the de-
sign with small steps.

Designing is performed using a top-down approach to decompose a larger sys-
tem into smaller blocks, to make sure these blocks e�ectively �t together and to
manage complexity. �e design steps consist of analysis (goals and research), syn-
thesis (development and implementation) and evaluation (veri�cation and valida-
tion) and are illustrated in �gure �.�). During the research phase the goals and
requirements are analysed and di�erent options to satisfy the requirements are ex-
plored (diverge). Ideally, this results in a formal speci�cation of the selected solu-
tion (converge).�e development phase uses this formal speci�cation to synthesise
a system in several steps. During evaluation the synthesised system is veri�ed, by
tests or simulation to conform to the requirements and speci�cations. Validation
con�rms whether the goals are met or not. Depending on the results the design
can be re�ned, starting the next design cycle.

When designing a mixed signal embedded system the traditional approach
uses a combination of e.g. mathematics for analysis, SysML/UML for (system)
modelling, Simulink for functional simulations, SystemC or a hardware descrip-
tion language (HDL) for digital hardware implementations and C for so�ware im-
plementations [��, ��, ��, ��, ��]. �is means a number of tools are used, each with
its own model of the system. �is complicates holistic iterative system design and
makes the trade-o� of what to do in which domain more di�cult.

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

an
aly
sis

m
at
he
m
ati
ca
l m

od
el

synthesis

functional model &
im
plem

entation

evaluation
simulation model

to

p-down

in
cr
em

en

tal iterativego
al
s

res
ear

ch

re
qu
ire
m
en
ts

spe
cific

ation

developm
ent

development
im
plem

entation

evaluationverification validati
on

F����� �.�: Model-based design process

�.�.�.� Model transformations

Key to model-based design is the use of a single model with a transformational
design process, i.e. model transformations are used during the design steps. For
example, in order to decouple the system design from an architecture, a high level
model should be architecture independent and a model transformation can be ap-
plied to generate a model for a speci�c architecture.

For each step of the design process, more detail is added to the model. �e ini-
tial model uses a more abstract implementation of the functionality. During analy-
sis the design is decomposed into smaller blocks. �e smaller blocks are extended
by supplying more detail per block. In the development phase the more abstract
blocks model (ideal) functionality, and these blocks can be combined with more
developed blocks that also include implementation details. �is facilitates interdis-
ciplinary work, such as when performing hardware/so�ware co-design where it’s
not yet clear which hardware will be used or when di�erent options are evaluated.
�e implementation itself can consist of for example block schematics, hardware or
so�ware. Simulating the model during the design process helps to evaluate design
decisions and test implementations.

When performing a model transformation, we must ensure the transformed
model is still correct, i.e. that the functionality has not changed. �us, model
transformations must be veri�able and correctness preserving.

�.�.�.� Design space exploration

Another important advantage of model transformations is that it facilitates design
space exploration. Decomposing a system involves division over domains as well as
divisionwithin a domain and o�en includes design decisions and trade-o�s which
must be evaluated by the designer.�us, it is very valuable for the design process to

��

�.�.
M
���������

evaluate the results a�er a transformation and to be able to revert the transforma-
tion and try alternatives. For example, amodel can be transformed to an equivalent
model which represents a mapping to an architecture, or the transformation maps
the model to a prede�ned architecture.

�.�.� Environment

Many embedded systems interact with their physical environment. For example, a
mobile phone sends and receives radio signals, has light and proximity sensors, a
microphone and speakers, etc., all interacting with the environment. �is environ-
ment and the analogue interfaces are modelled in the CT domain. �e computa-
tions of the system are performed in the DT domain by digital hardware. For ex-
ample, in a radio receiver the CT processes include the actual radio signal together
with the distortions introduced by a channel (noise, interferers, etc.) and the ana-
logue front-end of the receiver, whereas further processing of the digital hardware
consists of �ltering, demodulation, error correction, etc. in the DT domain.

Moreover, the processing in the DT domain can adapt and react to changes in
the environment.�is introduces feedback that spansmultiple domains. It is there-
fore important to be able to analyse and verify these interactions in a single model
that includes all domains. A system with both continuous and discrete dynamic
behaviour is called a hybrid system. As an example to illustrate the necessity to in-
tegrate the various domains, we mention an ADSL modem, which uses adaptive
transmission based on cable conditions. We must include the noise and distor-
tions of the cable to exactly verify the correct operation of the coding, modulation
and error-correction, as worsening or improving cable conditions result in di�er-
ent communication modes that are negotiated between the modem and a cable
network controller. Without including the environment in the model, a hardware
prototype must �rst be developed to verify the correct operation. Clearly, this is
far too late.

Current design tools (see [��] for an extensive survey of multi-domain system
design tools) implement the interaction between the above mentioned domains
by discretising a global simulation time and representing signals as a sequence of
values. �is prevents exact transformations with respect to time, such as for sys-
tems with variable time delays or multi-rate systems. �is time step should be
small enough to meet the requirements of all the components in the system, as the
whole system under design is evaluated at this time step. However, this may result
in extremely ine�cient simulations as several components, such as e.g. integration,
may require a very small time step to achieve enough accuracy. In addition, it will
not be possible to capture all timing issues in one global clock. For example, a
time delay may depend on changing circumstances in the real world and thus will
not be predictable during simulation. Since existing simulation tools also consider
CT as a sequence of discrete values, the best they can o�er for the value of a de-
layed signal is an interpolation between known values on moments that are close
to the delay. Here too, to make this interpolation accurate, the chosen time step
has to be very small. Summarising, both aspects — using values for continuous

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

functions and a single global time step for simulation — cause that simulation ei-
ther becomes less accurate or less e�cient. We will discuss these problems inmore
detail in section �.�.

Modelling the physical environment should be exact in order to correctly vali-
date the design. Approximations like interpolation introduce inaccuracies that are
modelling artefacts; we can not di�erentiate between the error caused by the mod-
elling tool and an error caused by an incorrect speci�cation or implementation.
For example, testing algorithms for wideband beamforming or time shi�ed sam-
pling relies on this; signals arrive at di�erent antennas with di�erent time delays
because of path length di�erences. Even for narrowband beamforming; if the an-
tenna elements aremoving with respect to the source, they experience the Doppler
e�ect. For antenna elements with di�erent speeds, for example on a moving ship,
this e�ect can not be represented by a simple frequency shi�. Instead time-scaling
must be applied. Other examples are path length di�erences for di�erential pairs
or network delays.

Note that in this thesis the term exact is used in the context of a simulation tool
executing on a computer. As such, the exactness of the results are inherently limited
by the machine precision. However, in the approach we will present, the accuracy
is limited only by the machine precision, while other tools will introduce much
larger inaccuracies in the order of the step size used for approximation. As such,
we will use the term exact for results limited by the machine used for simulation
in contrast to limited by the tool used for simulation.

�.�.� Data�ow

So�ware for streaming applications can be modelled quite naturally with data�ow
models. A data�ow model is a graph of nodes (processes) connected by edges
(channels); data tokens are processed inside nodes and sent from one node to an-
other through the edges. Tokens are abstract in the sense that they may have any
internal structure. A process may consume and produce several tokens at a time;
when there are not enough tokens available on the input edges of a node, that node
will not execute (�re). �e condition that enables �ring is called the �ring rule.
Consumption and production of tokens is instantaneous in the model, while a pro-
cess can have execution time. Note that executions can overlap: if enough tokens
are available to �re, the process directly executes even if the process is already ex-
ecuting. �is can be restricted by introducing self-edges, i.e. channels that loop
back to the process itself. Data�ow is presented in considerably more detail in ap-
pendix A.

Data�owmodels are used for representing so�ware formulti-core systems.�e
DF domain provides a model for stream processing with explicit communication.
Processes in the data�ow model represent computations and channels represent
communications. One or more processes can be mapped to processing tiles on a
SoC, while the channels are mapped on its NoC.

It is important to di�erentiate between data�owmodels, data�ow analysis and
data�ow execution. �e application executing on a multi-core platform is mod-

��

�.�.
M
���������

elled as a data�ow graph, representing a partitioned or parallelised application.
Data�ow analysis of this model then o�ers a prediction of the real-time perfor-
mance characteristics for a real hardware platform instantiation. Data�ow execu-
tion semantics ensure we do not have to worry (from the application’s perspective)
about losing data or receiving data out of order, i.e. communication and synchro-
nisation, when running applications on this platform.

Application modelling Data�ow processes can be seen as mapping sequences
of inputs to sequences of outputs, or functions on streams [��]. �ey are therefore
useful for parallelising streaming applications [��] and mapping streaming applica-
tions on multi-core architectures [��, ��, ���]. Processes are mapped onto compu-
tational resources and channels are mapped onto communication resources.

As processes are independent, they may not in�uence each other besides the
explicit inputs and outputs, i.e. data�ow processes must be side-e�ect-free. �is
ensures the processes have no shared state, all communication is explicit, thereby
allowing us tomap one ormore processes to independent tiles. Furthermore, these
processes can be moved to di�erent tiles when necessary.

Veri�cation When designing embedded systems, we must be able to verify the
correct operation and the performance of the system. �is also includes the so�-
ware of the system. Veri�cation can be performed by simulation or by using anal-
ysis techniques.

For analysis of the data�owmodel we need to take into account execution time,
communication, bu�er capacities and scheduling. Data�ow models have no no-
tion of time, only ordering. For metrics such as throughput and latency to make
sense, and allow them to be determined by the analysis techniques, processes in the
data�ow model are annotated with execution time. Methods are then available to
analyse deadlock and race conditions, to calculate bu�er sizes, and to determine
or estimate latency and throughput of tokens streaming through the graph (see
e.g. [���]). �e result of the analysis is then used to properly dimension the sys-
tem [��, ���].

For simulation, the data�ow model is executed, requiring an execution model
(determining how a model is executed for simulation). Our execution model for
the DF domain is presented in section �.�.�.

Abstraction Data�ow models have a number of properties that provide a useful
abstraction from scheduling, communication and synchronisation details.

All data�ow models have self-timed execution, i.e. a process can execute as
soon as all input data is available. �erefore there is no need for global control of
the execution. However, for restricted data�ow models with �xed token rates, a
static schedule can be determined on beforehand, removing scheduling overhead
completely [��].

In the DF domain, tokens in channels remain ordered, as data�ow models are
order-preserving. As data�owmodels are deterministic, data cannot be lost during
communication.

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

Channels are of unbounded capacity, but bu�ers between processes are mod-
elled by two channels in opposite directions; one carries the tokens to be communi-
cated and the so-called back-edge models empty space in the bu�er. A process can
therefore only execute when there is enough space in its output bu�ers.�us, a pro-
cess is stalled if the tokens are not consumed from the output bu�er fast enough by
the next process. �is is called “back-pressure” and results in automatic synchro-
nisation in parallel execution.

�.�.� Mathematical foundation

�e model-based design approach typically uses a formal speci�cation, which pro-
vides a mathematical description of the functionality of the system. �is speci�-
cation forms the initial model used during the design process. As such, it is very
useful to represent models using mathematical de�nitions�.

�.�.�.� Mathematical de�nition

A mathematical de�nition of models allows one to easily de�ne and extend the
model from the (formal) speci�cation. �e speci�cation thus provides a conve-
nient initial model, against which model transformations can be veri�ed. Such
model transformation are also formally speci�ed, and can thereby be proven to be
correct.

A mathematical model also represents a structural hierarchy. Functions repre-
sent model components and such functions can be de�ned using other functions
(sub-components). Furthermore, the arguments and results of functions can be
named and as such be used to represent connection between components.

�e mathematical model is evaluated by calculating the result when applying
the function to an input. Evaluating the function over a range of inputs is akin to
performing a simulation of the model. In a sense we use executable mathematics
for simulation. We de�ne that the output of a function is calculated as soon as all
arguments of the function are available.

Mathematical equations de�ne relations and all equations are valid simultane-
ously. A mathematical model is therefore parallel by nature.

A mathematical model is very suitable as a model for system design, because
of the qualities described above. �e idea of executable mathematics is not new.
In fact there is a whole research �eld on reasoning about programs and ensuring
a “correct and meaningful correspondence between programs and mathematical
entities in a way that is entirely independent of an implementation” by providing
the denotational semantics of a program [��]. Surprisingly, there are only a few
model-based design tools with a mathematical basis. We will discuss these tools
further in section �.�.

�As a model only provides an abstraction which can be represented in many ways, a mathematical
de�nition is not a necessity for model-based design.

��

�.�.
T��

�,�������,���
����������

������
�

�.�.�.� Functional languages

In a functional language, a computation is considered as evaluating a mathemat-
ical function, i.e. the basic method of computations is applying a function to an
argument [��]. Programs are de�ned by equations instead of statements as in im-
perative languages. A functional language is therefore close to mathematics and
provides a nice �t to represent mathematically de�ned models in.

Functions are �rst-class in functional languages; they can be used as arguments
and results of other functions. Such functions are called higher-order functions.
Higher-order functions also enable partial application; a function is applied to part
of its arguments and returns a new function on the remaining arguments. Instead
of applying a function on a tuple of arguments, a function can also be applied to
its arguments one by one, called currying.

We choose the functional language Haskell [�]. Haskell is a statically typed,
lazy, pure functional programming language. Pure means that a function has no
side-e�ects (all observable e�ects of the function are its results) and the evaluation
of a function always gives the same results for the same arguments, as we expect of
a mathematical function. Lazy means the evaluation of the arguments is delayed
until its value is actually required. Statically typed means the types of functions
are checked at compile time. Haskell also has type interference, i.e. the types are
deduced from the function de�nition and its context. For more background on
functional languages, we refer to [��, ��].

�.� T���, �������, ���������� ��� �������

Systems in the �eld of engineering are o�en divided into components that inter-
act, in order to manage the complexity of designing systems. For CT and DT sys-
tems, the interaction between components is by signals, which represent measur-
able quantities over time for transmission of information, or more general, signals
represent data over an independent value such as space or time. A system is char-
acterised by how it responds to input signals, in other words, components denote
signal transformations.

�.�.� Continuous and discrete time signals

We di�erentiate between continuous time and discrete time. Continuous time is
unbroken orwhole, i.e. de�ned for all time. Discrete time quantises time to distinct
separate moments in time. �us there are two kinds of signals:

• Signals in the CT domain are functions of time, i.e. they represent the value
of the signal over all time.

• Signals in the DT domain are values at discrete moments, also called sam-
ples.

�ese representations are a conscious choice. For aCT component, the input signal
represents a function over all time. �erefore, its time reference can be changed,

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

the signal can be delayed or time can be scaled (e.g. speed-up). However, for a DT
component the input signal is a value at a discrete moment in time. �is value is
linkedwith a sample time, but theDT component can not and should not be able to
in�uence this time. From the perspective of the DT component, the input signal is
just a value, but a value that changes over time. �erefore, the input signal of a DT
is also a function of time, however, this time is not accessible to the DT component,
i.e. time is de�ned at a higher level for the DT component and is irrelevant for its
operation. We do not want a DT component to operate on a list of values over all
time either, because this would give the DT component access to all future and past
values. Only having access to the current value forces a DT component to make its
state explicit, i.e. state is an explicit input and output of the component. As such
there is only a notion of the next value. �us, the state and output of an operation
change with a new input value, irrelevant at which time this is.

Summarising, a function that takes a signal and transforms it to a new signal is
called a signal transformation. In case of DT signals, the implementation of a signal
transformation corresponds to an operation or function on a value, i.e. the signal
is a value. In case of CT, a signal transformation corresponds to a function on a
function (the signal as a whole), i.e. it is a higher order function. As such we have
extended the classical meaning of signals a bit, although signals still conceptually
represent a time-varying quantity. Furthermore, a CT signal transformation can
change the time reference, e.g. the output signal is a time delayed input signal.
Other transformations with respect to time are re�ection or scaling.

�.�.� Signal �ow diagrams

Signal �ow diagrams or block diagrams are popular in system design tools because
of their intuitive use and ease of understanding [��]. We will shortly discuss their
connection with components and signals. Components in such diagrams denote
signal transformations and arrows denote signals. Composition of signal transfor-
mations is analogous to connecting blocks in a signal �ow diagram.

To compose components from di�erent domains, the signal representation
must be changed. To go from the CT domain to the DT domain, the signal is
sampled at speci�c sample times by an ADC. To go from the DT domain to the CT
domain, the sample is held until the next value by a digital-to-analogue converter
(DAC).

�.�.� Signals and components in data�ow models

We will generalise this notion of signals and systems to include the DF domain.
�is enables us to include DF in a model with CT and DT, where components and
their interaction have the same meaning for the DF domain as for the CT and DT
domain.

An important observation is that processes of a data�owmodel also transform
data. �erefore, components in the DF domain can also be represented as signal
transformations. In the DF domain, signals are lists of tokens. In all domains com-

��

�.�.
T��

�������
�
���

���
�

ponents are signal transformations. However, the perspective on the data that is
transformed in each domain is fairly di�erent, as is the representation of signals
in each domain. To go from the DT domain to the DF domain, samples become
input tokens for the DF component. To go from the DF domain to the DT domain,
output tokens become samples for the DT component. A DF component can be
combined with a CT component via a DT component.

Furthermore, a data�ow model has no notion of time but the CT and DT do-
mains do. However, when a DF component is combined with CT or DT compo-
nents, the latter domains determine the time that tokens for the DF component are
produced (sampled) and therefore introduce a time reference to the DF domain.
Execution time of the DF component then determines the time at which the out-
put tokens are produced. Note that the DF component can only be connected to a
DT component, because we assume the sample time of the DT domain determines
the production time of the corresponding DF token.

�.�.� Other domains

�e DF domain is related to the synchronous/reactive (SR) domain. Synchronous
means that computations are considered instantaneous and reactive means the
model reacts to events from the environment. In the SR domain, physical time
is replaced by an ordering at global clock ticks. �e DF domain abstracts time
even further; there is no global ordering, only dependencies. For completeness:
the discrete event (DE) domain de�nes passage of time between clock ticks, while
for the DT domain all samples have a corresponding physical time [��]. In this
thesis we will limit the scope to the CT, DT and DF domains.

�.� T�� ������� ���� ����

Consider a simple system consisting of a continuous time sine source connected
to a time delay block, followed by an ADC, a bias (o�set) and a sink which plots
the output. �e CT part and DT part are indicated in the �gure:

∆t A�D +n

Continuous Time Discrete Time

F����� �.�: Mixed CT/DT system block diagram

�.�.� Notions of time

In such systems we identify di�erent notions of (modelled) time:
• the instants when the designer wants to know the behaviour of the system,
the simulation time,

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

• the instants when continuous information from the environment is sampled
by, say, an ADC, the sample time,

• the time steps that are necessary to numerically approximate functions (e.g.
an integral), the approximation time,

• the time that has elapsed during processing, the execution time,
• the time locally, possibly transformed by e.g. a time delay, the local time.

�e last notion of time is necessary to represent relativity: di�erent distances from
a source lead to di�erent local time references relative to the source. From the
perspectives of components at di�erent distances, the source is at a di�erent time,
yet the source is de�ned for a single time reference. �erefore, each component at
a certain distance must have its own local time reference to the source, i.e. time
is a local property and time is relative. �is occurs for example for a front-end
withmultiple signal paths, whichmight have slightly di�erent path lengths, thereby
modelling non-ideal common mode noise rejection.

We will show that time must be a local and relative property of a component
in the model to accurately model time transformations.

�.�.� Global solver

�ere aremanymixed continuous/discrete timemodelling tools [��]. Existing tools
perform a simulation by extracting a set of ordinary di�erential equations (ODEs)
from themodel. Some tools such asMapleSim (see section �.�) optionally perform
symbolic simpli�cations on this set. �en the set of equations is (in the general
case) solved numerically, i.e. such solvers numerically approximate the di�eren-
tials. For a mixed CT/DT model, signals in the DT domain are represented as
piecewise-continuous for the solver.

Typical solvers used in tools are the Euler methods or the Runge-Kutta meth-
ods [��, ��, ���]. Such solvers operate iteratively with a �xed or variable step size.
Each step the equations are evaluated and the results updated according to the al-
gorithm.

�is iteration step is a time step, i.e. iteration is performed over time. Time
is thus a global property of the model as it is applied to the complete equation set,
which represents the complete model. Furthermore, the same solver is used for all
components in the model for the same reason.

�.�.� Discretisation of time

Simulation for existing tools discretise global time into time steps to iteratively
solve the set ODEs over time. �us, although the di�erent notions of time are in
principle unrelated, they are coalesced into a global time. At each simulation step
the complete model is evaluated and a resulting value is calculated.

So, the inputs and outputs of the model components are the values at a certain
global time step. �is means that the time step determined by the solver for nu-
merical approximation of a di�erential equation is applied to all equations. �e

��

�.�.
T��

�������
�
���

���
�

global time step causes the whole system to be evaluated, while it is very well pos-
sible that most of the system does not need to be evaluated at this �ne-granularity,
reducing e�ciency; for example, the DT domain most likely has a sample period
much larger than the approximation step, of e.g. an integral in the CT domain,
which o�en has to be very small for su�cient accuracy. We have experienced this
when simulating one second of a phased array antenna system, which took hours
in Simulink (also see chapter �) because of the small time step needed for su�cient
accuracy.

However, as we will see next, discretisation of a global time is even more prob-
lematic in case of time transformations.

�.�.� Time transformations

In summary, existing simulation tools do not distinguish di�erent notions of time.
All the notions of time are coalesced into a global (simulation) time. �e solver
must determine the time instants to solve the set of equations. Furthermore, there
is a single representation of signals as values at a certain simulation time.

Consider the very simple Simulink system in �gure �.� consisting of a sine
wave source, a (variable) time delay and a scope. A �Hz sine with a �° initial phase
is used. �e (maximum) time step size for simulation is �.�� s, so �� simulation
results per period. �e step size is not adjusted by Simulink, because the model
contains no di�erential equations (only algebraic). �e time delay is �.� s, which is
deliberately chosen not to �t the step size.

A plot of the simulated output is shown in �gure �.�, a shi�ed sine wave as
expected. �e ideal result is a sine wave with an initial phase of −�π ⋅�.�, but when
compared to the output of the delayed sine wave of �gure �.� the Simulink output
has an error (shown in �gure �.�). �is error is caused by interpolation. �e time
delay block bu�ers values each time step and retrieves a value for the delayed time.
When a value at the delayed time is not available, the result is interpolated from
the surrounding values. �e error is directly related to the frequency of the signal
and the step size. Higher frequencies need smaller steps or will give larger errors.
When the simulation time steps are large compared to the frequency, this error can
be quite substantial.

One might expect that a solution is to make the time step a multiple of the
delay as the delay block can then retrieve the exact value. �ere are at least three
problems with this:

a) if the delay is small the step size needs to be small, resulting in many (�xed)
steps and thus ine�ciency,

b) if multiple time delays are used, without a common factor, separate time
steps for each time delay are needed for accurate results,

c) if the delay is variable, the current time step depends on a unknown delay in
the future.

As in general the time delay can be variable, in Simulink the delay is not even taken
into account when determining the time step. �e consequence is that if a value

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

F����� �.�: Simulink example
F����� �.�: Model with multiple ADCs

am
pl
itu

de

time (s)

F����� �.�: Delayed sine wave

am
pl
itu

de

time (s)

F����� �.�: Time delay error

is not available at the exact time, it is interpolated between available values, giving
results that are not exact.

A second example of a problematic model is shown in �gure �.�. An ADC,
implemented as a zero-order-hold (ZOH), is assumed to have a �xed sample rate,
i.e. a ZOHholds the value of the input at the beginning of a �xed period for the rest
of the period (otherwise a sample-and-hold should be used, which has an explicit
input for triggering a possibly variable samplemoment).�e simulation time steps
are indeed synchronisedwith and determined by the sample rate for both �xed and
variable step sizes in Simulink. For a multi-rate system with more ADCs the time
stepsmatch the sample times of allADCswith a variable step. However, a�xed step
size results in a very small time step, matching the common denominator. Already
for more than two ADCs the time step becomes too small and generates an error
in Simulink.

In section �.� we will present a survey of mixed domain modelling tools in re-
lation to their ability to model time in the CT domain among others. We will �nd
that there is no such tool that can deal with time in an adequate manner. �erefore
and because of other shortcomings we propose a novel modelling and simulation
framework in chapter � that enables local control over the time, i.e. by locally apply-
ing time transformations or time steps the problems described here can be resolved
while retaining e�ciency.

��

�.�.
S�����

��
��������

�����

�.� S����� �� �������� �����

�ere aremanymixed domainmodelling tools. Wewill�rst give an overviewof the
major players and then relate them and others to exact continuous timemodelling,
multi-domain modelling support, support for mathematical de�nitions, model
transformation support, and parallelisation support.

�.�.� Major tools

An extensive survey of languages and tools for hybrid systems can be found in [��].
Some of the better known tools are Simulink for CT and DT modelling and �nite
state models, Ptolemy (II) [��] which supports many domains with a strong basis
on DF and aims to be a testbed for multi-domain modelling, SystemC-AMS [���]
as an extension of SystemC for system-level mixed signal modelling, and Model-
ica [��] which is an object-oriented declarative modelling language. We will dis-
cuss the major tools in more detail next.

MATLAB/Simulink Simulink [��] is a graphical environment for dynamic and
embedded systems, using block-diagrams for modelling and simulation for func-
tional analysis. It is o�en used together withMATLAB, an imperative language for
numerical computing. Simulink is the de facto standard for mixed CT/DT system
modelling [��]. It is, however, limited in its support for multiple domains, only
supporting DT as piecewise CT and State�ow for �nite state machines.

Simulink has support for hierarchical models and allows for code generation
to C or VHDL. It supports many di�erent numerical solvers. Models can be inter-
preted or compiled for simulation, and simulation is supported by di�erent plot-
ting scopes and showing the data type and sample time of the signals in the model.
�ere are many specialised toolboxes, for application domains such as signal pro-
cessing, providing implementations of common blocks.

Simulink is not very suitable for modelling digital hardware and so�ware for
multi-processor architectures, where architecture de�nition, recon�guration and
programming come into play. �e reason for that is that the graphical interface
does not o�er much �exibility when you (structurally) want to change your design.

In the context of this thesis, however, the important drawback of Simulink is
that it does not o�er adequate support for the integration of the various notions of
time. �is either causes inadequacies in the simulation results or large ine�cien-
cies during simulation. Furthermore, Simulink does not support DF models.

Ptolemy �e Ptolemy project [��] studies design, modelling and simulation of
concurrent, real-time, embedded systems. �e project provides a framework for
system simulation using diagrams and focuses on experimenting with various do-
mains with the goal of researching their interaction. Models can be created using
Java, XML or with a graphical tool. Ptolemy [��] supports many domains, includ-
ing CT and DF and experimental DT support. �e CT domain is de�ned as part
of HyVisual, the hybrid system visual modeller which is built on top of Ptolemy.

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

Ptolemy uses an actor model and tagged signals for integration. Actors are
concurrent computational entities that acts in response to messages. In the tagged
signal model [��], signals are a collection of events and an event is a pair of a time
and value. Ptolemy also has a notion of “super-dense time”; time is a real number
with an index for ordering events that have the same time such as with disconti-
nuities in a signal. Further, Ptolemy supports higher order components, but not
higher order signals.

Since Ptolemy, just as Simulink, uses a global solver, the problems with the
integration of time domains also are the same as with Simulink. Furthermore, both
Simulink and Ptolemy o�er little support for model transformations, apart from
code generation.

SystemC-AMS SystemC is a set of C++ classes to provide discrete event simu-
lation aimed at system-level modelling. It is used as a HDL, but also aimed at
system-level modelling. However, systems are regarded from an implementation
viewpoint, while the other tools are more from a requirement and speci�cation
viewpoint, i.e. SystemC aims at modelling at the architectural level in between
the function level and the implementation level [��]. SystemC-AMS extends Sys-
temC for mixed signal modelling [���], adding support for multi-domain signal
�ow models.

SystemC-AMS supports three modelling formalisms: timed data�ow, linear
signal �ow and electrical linear networks. Timed data�ow extends the un-timed
DF domain by assuming discrete time steps between tokens, a similar approach
to ours for including the DF domain. Linear signal �ow is similar to models in
Simulink, i.e. an equation system is abstracted from the model and a numerical
solver is used for simulation (see section �.�). Electrical linear networks use the
same approach, however, now connections between components are bi-directional,
i.e. it is an energy based model with e�ort and �ow, such as voltage and current
or force and velocity. Such e�ort and �ow based models are also known as bond-
graphs.

Again, since SystemC too uses a global solver, it has the same problems with
the integration of time domains as Simulink and Ptolemy.

Modelica Modelica [��] speci�es a object-oriented, declarative, multi-domain
modelling language for modelling physical systems. Modelica has similar struc-
ture to our approach: components de�ne relations and hierarchy, equations de�ne
functionality. Again models are described by di�erential equations. Components
can be de�ned as uni-directional signal-�ow blocks or bi-directional network com-
ponents. Modelica is designed to be domain-neutral, but a large set of domain
speci�c components are available in the standard library.

Modelica is only a modelling language de�nition; the simulation engine is un-
speci�ed. �ere are several implementations of the language such as Dymola or
MapleSim. MapleSim [��] is built on top of the symbolic math engine of Maple.
�e ODEs are �rst simpli�ed by using Maple’s analytical algorithms before a nu-
merical solver is used, resulting in faster simulations.

��

�.�.
S�����

��
��������

�����

In theModelica language there is nomodule prede�ned for time delays, and to
the best of our knowledge all tools which implement Modelica use a global solver
again and thus encounter the same problems as before. In addition, Modelica is
not aiming at data�ow models.

Functional (reactive) programming �e �eld of functional reactive program-
ming (FRP) [��, ��] uses higher-order functions, a standard feature of functional
languages, to model the CT and time-ordered discrete events for the SR (see sec-
tion �.�.�) domain. FRP has made excellent progress in being applied to di�erent
domains (for example animation [��], user interfaces [��] or robotics [��]) and pro-
viding formal semantics. �e original work [��] focused on interactive animation
with switching behaviours (animation) and events (interaction) [��]. In later work
explicit behaviours and events are combined and only signal transformations are
used [��, ���] in order to avoid space and time leaks (i.e. a backlog of remaining
old data in the memory or large remaining computations that have not yet been
evaluated because of laziness). FRP does not identify and use di�erent notions of
time; time is considered to be global and time is progressed globally by the FRP
framework, depending on e.g. the processing load.

In [���] higher-order model transformations for parallelisation are introduced
as strategies. Strategies complement an algorithm with a parallelisation approach.

ForSyDe [��, ��] is a system modelling and design re�nement approach for
embedded systems. ForSyDe aims at raising themodelling abstraction level; a spec-
i�cation is iteratively re�ned to implementation with (high level) model transfor-
mations. �e �rst version of ForSyDe supports SR and DE models [��] (signals
are tag-value pairs). Later versions also support automated hardware synthesis to
an HDL, but to allow this ForSyDe has a so-called “shallow” embedded domain
speci�c language (EDSL) variant for simulation and a “deep” EDSL variant for syn-
thesis of models. For the “deep” variant the models also include their structure in
the speci�cations, which an embedded compiler converts to an HDL. Inclusion of
other domains such as the CT and DT domain in ForSyDe is ongoing work.

Acumen [��] is a language for hybrid systems inspired by FRP. Executable
mathematics are used for modelling and simulation. �e latest version supports
(directed) signal �ow equations and uses, as standard, a global notion of time and
an ODE solver for simulations.

�.�.� Exact continuous time domain modelling

All the researched tools and languages [��, ��, ���, ���] use ODE solvers for simu-
lating the CT domain; an equation system is set up and a global time step is applied
for numerical approximation, thereby implementing CT signals as a sequence of
values. Time transformations such as a time delay therefore bu�er values and inter-
polate between available values introducing inaccuracies caused by the modelling
tool (section �.�).

Tools represent signals as either a value at a global time step or a time-value pair.
Although Ptolemy for example has a notion of super-dense time, this is still a time

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

(plus index) and value pair. Ptolemy and SystemC-AMS do o�er some support for
in�uencing the step size. For example, a block in a Ptolemymodel can reject a step
size of the ODE solver until all blocks agree. SystemC-AMS supports module and
port time step propagation as a consistency check.

However, as we saw above, all of the above tools do not o�er possibilities to
adequately integrate time domains.

�.�.� Multi-domain modelling

�ere are many tools supporting the CT and DT domains, o�en implementing DT
signal as piece-wise CT signals [��] as discussed above. However, there are few
tools that support CT, DT and DF; we only know of Ptolemy and to some extent
SystemC-AMS (which uses timed data�ow). Together with ForSyDe, they are also
the only tools that do not use �xed domains [��], i.e. in these tools the supported
domains can be extended with additional domains by specifying their interaction
with the existing domains.

�ere are several SR languages popular in embedded system design, such as Es-
terel [��], Lustre [��], Lucid [��] and Signal [��], because they have clear semantics
and e�ective formal veri�cation techniques [��]. However, none has support for
more domains than SR because of this.

�ere are also tools supportingDF. For example, LabVIEW[��] has a graphical
data�ow programming language, where signals are discetised streams of values. A
simulation context is used to add time and a solver to themodel. We have found no
formalisation or implementation of data�ow that matches the semantics of signals
and components as used in CT and DT signal �ow diagrams.

�.�.� Mathematical de�nitions

Asmodelling tools, to some extent, all of the above tools providemathematical def-
initions, i.e. models represent some mathematically speci�ed functionality. How-
ever, formany themathematical equations are not readily identi�able in themodel.
For example, Simulink uses a graphical block diagram supported by the MAT-
LAB language. MATLAB is a language for numerical computing, i.e. numeri-
cally approximating mathematics, but uses an imperative language for specifying
this. Ptolemy relies on graphical models supported by Java, while SystemC relies
on C++, both imperative languages. Only Modelica and FRP use declarative lan-
guages, which are close to specifying equations as discussed in section �.�.�.

�.�.� Model transformation support

A model-based design approach uses a single model for the (formal and func-
tional) speci�cation, veri�cation, simulation and implementation of a design. �is
model is re�ned with model transformations from speci�cation to implementa-
tion. �e Object Management Group (OMG) provides a speci�cation of the kind
of models and diagrams used for model-based design as part of the SysML pro�le

��

�.�.
S�����

��
��������

�����

of UML [��], and the abstraction levels as part of the model-driven-architecture
(MDA) speci�cation. How model transformations are performed is still actively
researched. Current support formodel transformations is typically limited to code-
generation [��, ��].

Simulink and SystemC-AMS have no support for modelling transformations.
Ptolemyonly recently added initial support formodel transformations using higher-
order components [��]. Projects researching automated system level modelling
with model transformations are Sesame [��] and Daedalus [��]. �eir focus is
on automatically parallelising applications, with the restriction that they consist of
static a�ne nested loop programs (see below).

�.�.� Automatic parallelisation

Part of the design process for embedded systems involves the partitioning of an
application to divide processing over multiple computational resources. Partition-
ing of the application can also be performed as a model transformation, but it is
more commonly known as automated parallelisation. �e discussed tools are not
normally concerned with matching the functionality with an architecture, other
than the model transformations discussed above.

Simulink and Modelica have code-generation support, but this is a separate
process and not part of the model. Ptolemy has preliminary code generation with
template �les with code blocks. On the other hand, SystemC-AMS models are
already supposed to be speci�ed on the architectural level.

A common approach for programmingmulti-processor architectures is to start
with the digital processing part of the design as an application in C [��, ���]. An
implementation in C translates the mathematical equations or expressions of the
streaming application in a set of sequential statements. �e statements update
the state in memory word-at-a-time, creating a bottleneck to a central memory
store [�]. A variable in an imperative language is mutable, i.e. it can be changed
at any time. �is makes it di�cult to partition the program as it is hard to derive
dependencies, i.e. what part of the program updates what memory at what time.
�erefore, a common restriction on programs that are auto-parallelisable, is that
they consist of static a�ne nested loop programs. Such programs consist of loops
which communicate via arrays and in which each loop only updates values in its
own scope at most once per execution [��], i.e. single assignment. From this re-
stricted program a graph is extracted to create a data�ow model.

�ere are a number of projects taking the route of auto-parallelisation of se-
quential code. �ey have in common that they all use a Kahn process network
(closely related to a data�ow model) to model the communication and synchroni-
sation of the partitioned application, and the applications are limited to static a�ne
nested loop programs. �e Leiden Embedded Research Center (LERC) has a num-
ber of tools within the Daedalus project [��], trying to bridge the gap between
system-level models and implementation. �e applications are provided in C or
MATLAB.A spin-o� company, CompaanDesign performs the auto-parallelisation
by graph extraction and dependency analysis [��]. �e Computer Systems Archi-

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

tecture group of the university of Amsterdam also uses a Kahn process network for
system level design for the Sesame project. �e implementation is based on C++
and XML.�e Apple-Core project [�] researches the design and use of many-core
architectures with support for light-weight threads and data�ow scheduling.

�e problematic character of automated parallelisation is con�rmed by the ex-
tensive research in this domain. Even for simple applications, it is already di�cult
to derive a data�ow model from a C application, because of unnecessary data de-
pendencies and data dependent control [��].

�.� U������ ��������� ����� �� ����

We have found that current modelling tools do not adequately support multiple
domains, model transformations, mathematical de�nitions and exact continuous
time modelling in an integrated approach, yet these features are required for ef-
fective model-based design of embedded systems. �erefore, we propose a de-
sign �ow and modelling and simulation framework that supports all these aspects,
calledU��T�. U��T� is a framework implemented inHaskell, a functional language,
but �rst and foremost it is a modelling and simulation approach supported by an
accompanying design �ow.

InU��T�, components are (higher-order) functions that transform signals.�e
representation of signals is di�erent in each supported domain. In the CT domain,
signals are implemented as functions of time, in the DT domain signals are imple-
mented as values, and in the DF domain signals are implemented as one or more
tokens, just as presented in section �.�. As in all domains components are signal
transformations, U��T� uses uni�ed composition operators for sequential, parallel
and feedback composition of components. For integration, a CT function is evalu-
ated at the sample time to determine the input value for the DT domain. A value
from the DT domain is held constant for the CT domain until the next value, re-
sulting in a piece-wise continuous signal. For DF integration, values from the DT
domain become input tokens and output tokens become values.

U��T� is unique in being based on function composition instead of value-pass-
ing.�erefore, signal transformation in the CT domain are composed such that for
example time delays are included in the �nal function, independent from the time
used for simulation. �is allows exact modelling of time transformations without
loss of e�ciency in simulation.

A formal description and detailed discussion of U��T� is presented in chapter �.
In this section we will relate U��T� to the desired characteristics discussed above,
before discussing the accompanying design �ow in section �.�.

�.�.� Model-based design

Following from the description above, U��T� supports theCT,DTandDFdomains
(which are arguably the most important domains for embedded systems) in a sin-
gle model. We have found no formalisation or implementation of data�ow that

��

�.�.
U
������

�
��������

�����
��

���
�

matches the semantics of signals and components as used in CT and DT signal
�ow diagrams, thereby allowing uni�ed composition of mixed domain models as
we provide with U��T�.

U��T� aims at raising the modelling abstraction level; a speci�cation is itera-
tively re�ned to implementation with (higher-order) model transformations. It
applies model transformations based on the mathematical properties, such as asso-
ciativity, of themodel components.�is is similar to strategies as used in functional
languages [���]. U��T� also uses model transformations for parallelisation. As the
application is speci�ed mathematically, this has the advantage that no dependen-
cies are introduced other than intended in the speci�ed algorithm. �erefore, it is
easier to partition and parallelise.

Hardware synthesis for the DT and DF domain in U��T� is also possible with
CλaSH [�], as U��T� components and the hardware components in CλaSH have
the same structure. However, they are not integrated yet.

Model transformations are parameterised, thereby providing the designer a
handle to try di�erent alternatives, i.e. design space exploration. U��T� provides
a functional evaluation during design space exploration. Of course, it is also very
useful to evaluate other costs of the design such as the required computational and
communication resources. A mapping function can determine the optimal solu-
tion for a given architecture, or the optimal architecture for the given performance
�gures according to some cost function. �ese costs can be included as meta-data
for the components in the model. For now this is a manual process, but it would
be a very useful extension to U��T�.

Overall, U��T� provides a single uni�ed framework supporting model-based
design, model transformations and design space exploration.

�.�.� Exact continuous time domain modelling

In U��T� we di�erentiate between the representation of the model and the simula-
tion of the model. A common view seems to be that (quoted from [���]): “[�e]
continuous evolution of variables is outside the domain of discourse of today’s com-
puters. �us, while a denotational semantics for a hybrid systems language might
embrace continuous evolution of the variable values, an operational semantics can
only de�ne values at discrete points in time.” However, it is only necessary to de�ne
values at discrete points in time for simulation, not for representing CT signals. Us-
ing higher-order functions, CT components are de�ned as signal transformations
on functions of time, which are composed into a �nal function before being eval-
uated. �e evaluation of the model, which as mentioned before is a simulation of
the speci�ed system, is then performed at discrete points in time.

U��T� is the only tool that provides exact mixed-domainmodelling using func-
tion composition. As higher-order functions are a standard feature of functional
languages, FRP also uses higher order functions. However, FRP does not identify
and use di�erent notions of time nor does it support the CT, DT and DF domain
and their di�erent notions of signals.

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

�.�.� Mathematical de�nitions
A functional language is close to mathematics, providing a nice �t to represent
U��T� in. By representing the models mathematically one provides a formal speci-
�cation which can be checked for correctness. Using mathematics for implement-
ing functionality also means the inherent parallelism in the formalism is retained.
Additionally, it allows for correctness preserving transformations and o�ers a uni-
�ed abstraction mechanism to integrate CT, DT and DF modelling. Simulation of
the design is done by straightforwardly evaluating the model. �is saves us from
the need to develop a speci�c solver (i.e. equation system and solution algorithm)
that evaluates the model, as is standing practice in current tools. In fact, for a com-
ponent that needs to be numerically approximated, such as integration, a solution
algorithm is applied locally as part of the component. A di�erent solution algo-
rithm and approximation step can be chosen independently for each component.

U��T� relies on quite a few features of the functional language Haskell. A key
feature exploited is the use of higher-order functions, used for model interactions
and model transformations. More imporantly, we will show in section �.� that we
can directly implement the formalisms of the CT, DT and DF domains in Haskell.
As a consequence we can also use all of Haskell’s tooling, such as the compiler
and libraries, anda component in a U��T� model can use the full power of the
Haskell programming language. In addition, the purity of Haskell restricts the
programs so that they can be used safely on parallel or distributed systems such
as MPSoCs. Finally, the type system is used to de�ne interfaces for components,
including all kinds of meta-data such as a visual representation of the component,
model requirements, and cost �gures and constraints.

�.� D����� ����
Using the domains de�ned in the previous sections, we will present a transforma-
tional model-based design �ow to identify and guide typical steps encountered
when designing embedded systems. Iterative, veri�able steps transform a single
model into a division of functionality over the environment, the architecture (ana-
logue and digital hardware) and the application (so�ware), as well as a partitioning
of the so�ware over multiple cores. Although these steps described by themselves
are not new, it is important to match them with the presented domains and with
model transformations. A connection that is not trivial, as is evident from the lack
of support for this in current tools.

Figure �.� illustrates the �ow. �e rounded rectangles represent models and
the arrows represent transformations. A single multi-domain model includes the
environment, the architecture and the application.

�e design �ow uses a top-down divide-and-conquer approach. �e initial
(formal) speci�cation of a system is readily implemented and veri�ed in the CT
domain. We will discuss the co-design and partitioning steps; the mapping and
code generation are beyond the scope of this thesis. Co-design can be seen as a
division over the domains, while partitioning can be seen as a division within a
domain (which we will limit to the DF domain in this thesis).

��

�.�.
D
�����

����

Speci�cation
(math)

Single multi-domain model

ApplicationEnvironment Architecture

Composition
(data�ow)

Implementation
(platform)

co-design

partitioning

mapping
code generation

F����� �.�: Design �ow for tiled architectures

�.�.� Co-design

During the co-design process, functionality is divided over the di�erent domains.
We distinguish a number of tasks:

• Decide what is needed from the environment for simulation and veri�cation
of the designed system. �e environment is modelled in the CT domain.

• De�ne the architecture and decide what is implemented in analogue hard-
ware (CT domain) and what in digital hardware (DT domain).

• Decide what to do in �xed hardware (ASIC, FPGA) and what to do in pro-
grammable hardware and so�ware (DF domain), thereby re�ning the archi-
tecture and de�ning the application.

Co-design emphasises that the di�erent perspectives in the domains are part of the
system design and need to be included.

�.�.�.� Analogue/Digital co-design

Analogue design uses continuous time mathematical models. Going to the digital
domain involves sampling and quantisation by an ADC as well as choosing a rep-
resentation such as �xed or �oating point, and determining the required accuracy.
Determining what to do in the analogue domain and what to do in the digital do-
main, i.e. where to place the ADC, involves taking into account implementation
aspects in both domains as well as ADC limitations. It is o�en bene�cial to move
the ADC as far forward as possible, as in so�ware-de�ned radio (SDR), because of
the �exibility the digital domain brings. But especially in embedded systems, it is
not possible to totally replace the analogue hardware by digital hardware. Consider
for example mobile phone designs, in which the frequencies are too high to be able
to implement everything in digital hardware.

��

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

�.�.�.� Hardware/So�ware co-design

Processing systems o�en have a trade-o� betweenwhat to do in hardware andwhat
in so�ware. Hardware refers to speci�c functionality with limited �exibility, but
high e�ciency (area, power, performance, cost), while so�ware refers to process-
ing on some kind of processor which can be programmed and is therefore much
more �exible, but at the cost of e�ciency. Hardware/so�ware co-design refers to
designing the hardware and so�ware together in co-operation, thereby de�ning an
architecture, andmapping functionality to hardware and so�ware for this architec-
ture. �is involves balancing a trade-o� between �exibility and e�ciency.

�.�.� Partitioning

A�er functionality is assigned to hardware or so�ware, the so�ware is partitioned
over the programmable hardware (cores) in case of a multi-core architecture. �e
performance and e�ciency of the so�ware is determined by computation and com-
munication costs. �e computation is the actual work to be done, while the com-
munication ensures the data is available at the right place and time. Having the
data close to the computation, increases the e�ciency by lowering the communi-
cation costs, exploiting so-called “locality of reference”. As partitioning separates
the computation, it introduces extra communication and has an in�uence on the
performance.

We use a data�ow model where the processes contain the functionality and
the communication is made explicit via channels. Such a model thus represents
a partitioning of the so�ware and transforming the data�ow graph changes the
partitioning. Execution and channel content can be monitored with U��T�.

�.�.� Example

As an example of applying the design �ow, we design a low-pass �lter for a CT
source using the presented design �ow. We choose to use a FIR �lter in the DT
domain, because this allows us to easily change the �lter coe�cients.

�e speci�cation consists of the requirements and amathematical speci�cation
of the functionality. �e �lter requirements are a ��dB attenuation low pass �lter
with a �MHz bandwidth. �is results in a set of coe�cients for the FIR �lter, of
which the speci�cs are not relevant for this example. �e FIR �lter is mathemati-
cally de�ned as:

y [t] = (h ∗ x) [t] =
N
�
n=� hn ⋅ x [t − n] (�.�)

where N de�nes the �lter order, h is the set of coe�cients, x denotes the input data
and y denotes the �lter response.

��

�.�.
D
�����

����

As the FIR �lter uses a DT signal (x [t]), an ADC is added before the �lter:

A/D

F����� �.�: Filter block diagram

�e environment generates the source signal. For the architecture, assume a
�-core MPSoC with an ADC. �e application consists of the FIR �lter. To �t the
application to the architecture, the application is partitioned and state is introduced
to limit communication, as we will discuss next.

A direct implementation of the �lter of equation (�.�) on a single core would
require read operations on the input data xt−�,t−�, . . . ,t−N (in memory) for output
value yt . For the next output value yt+�, the values xt ,t−�, . . . ,t−N+� are read. Hence,
there is an overlap in read operations on xt−�,t−�, . . . ,t−N . By storing these values in a
local state, only the new value xt needs to be read. So, the introduction of state sig-
ni�cantly reduces the communication bandwidth due to locality of reference [��].

Consider the FIR �lter from equation (�.�). When introducing state st (a vector
of state values at time t), this equation can be rewritten as follows:

st [�] = x [t]
st [i] = st−� [i − �] , where i = � . . .N − �

y [t] =
N
�
n=� hn ⋅ st [n] (�.�)

where the recurrent relation between st and st−� (shown at the second line in equa-
tion (�.�)) can be implemented very e�ciently by a shi� register. Although the
state derivation seems to be trivial when done manually, an automated approach
is much harder. �is requires an advanced analysis of dependencies that in�uence
the possibilities for partitioning, in order to obtain an e�cient solution.

When state has been introduced, the communication bandwidth is reduced.
However, the performance may still be too low for the execution on a single pro-
cessor. �erefore, the operation is partitioned:

y [t] =
N
�
n=� hn ⋅ st [n]

=

N
�

�
n=� hn ⋅ st [n] +

N
�

n= N
� +�

hn ⋅ st [n] (�.�)

Note that the rightmost sum shown in equation (�.�) requires the state value st � N� �.
Using equation (�.�), we �nd st � N� + �� = st−� � N� �, which only existed in the le�-
most sum shown in equation (�.�). Hence, if both sums are mapped on di�erent

���

C
��

��
��

�.
M
��

��
-�
��
��

��
��
��

��
�
��
��
-�
��

��
�
��
��
��

�

∗� ∗�

+

� � �

�

�

�

�

�

process

F����� �.�: Data�ow model for the FIR �lter application

processors, this intermediate state value has to be communicated. Also note that
the equation parts are similar to the original FIR �lter equation.

A�er partitioning the application, the resulting computations are assigned to
processes in a data�ow model, as shown in �gure �.�.

�.� C���������

In this chapter we havemotivated the need for amodel-based design approach that
supports the CT, DT andDF domains.�e CT domain is used for representing the
environment and analogue hardware of an embedded system. �e DT domain is
used for the digital hardware, and the DF domain is used for representing so�ware
that is intended for a multi-core SoC with a NoC. Such a model-based design ap-
proach should also support mathematical de�nitions and model transformations.
A model-based design process is o�en supported by formal speci�cation, which
forms the initial model. Using mathematically de�nedmodels allows a designer to
directly de�ne the equation of the speci�cation in the model. Furthermore, math-
ematically de�ned models enable model transformations by exploiting the mathe-
matical properties in the de�nition.

�erea�er, we have presented a novel uni�ed perspective on time, signals and
components in such models. �is also includes the DF domain. In all domains,
components represent signal transformations, i.e. they transform input signals to
output signals. However, signals represent functions of time in the CT, values in
DT domain, and one or more tokens in DF domain. �is representation is deliber-
ate because CT components are allowed to change the time reference, but DT and
DF component should not be able to do this. Integration of CT components and
DT components is achieved by sampling a CT signal or by holding a DT value for
sample period. Integration of DT components and DF components is achieved by
mapping samples to tokens and tokens to samples. For CT and DF components,
the DT domain is used as an intermediate. Additionally, the integration of the DF
domain de�nes time for tokens in a data�ow model, as the token arrival time is
then de�ned by the sample time of the DT signal. �erefore execution time for

���

�.�.
C
���������

data�ow processes also has meaning and determines the (production) time of out-
put tokens.

When simulating mixed-domain systems in current tools, time transforma-
tions, such as time delays, in the CT domain introduce artefacts. �is occurs be-
cause such tools use a global solver which de�nes discrete global time steps to eval-
uate the system at. At each time step components pass values and components
such as time delays must therefore be implemented by bu�ering values and using
interpolation. �is requires the designer to either accept less accurate simulations
or reduce the simulation time step to improve accuracy at the cost of e�ciency in
simulation.

A survey of currentmodelling and simulation tools show that there are no tools
that support exact CTdomainmodelling, few tools that support DFmodelling and
even fewer tools that also support mathematical de�nitions andmodel transforma-
tions. �erefore, in the next chapter U��T� is proposed. U��T� supports a uni�ed
perspective of the CT, DT andDF domains, and also provides uni�ed composition
of components in di�erent domains. �is allows exact CTmodelling because time
transformation are composed into a �nal function before simulation. U��T� is im-
plemented in a functional language and therefore close to mathematics. As such,
models can be directly evaluated for simulation, and model transformation based
on the mathematical properties of components are supported.

Finally, these model transformations are used in a design �ow for the design
of embedded systems. �is design �ow uses a co-design step for a division of the
model over the domains; a speci�cation is transformed into a representation of
the environment, the architecture (hardware) and an application (so�ware). Next,
a partitioning step performs a division within a domain, which we use for parti-
tioning the application in the DF domain. Mapping and code-generation give a
�nal implementation.

C������ 5
U��T�

A������� – U��T� is a modelling and simulation framework for embedded
systems supported by an accompanying design �ow. It supports model-based design,
model transformations, and mathematical de�nitions for multi-domain models in
a single model, as follows from the analysis of the requirements and shortcomings
of current tools in chapter �. In this chapter we will present the formalism of U��T�.
U��T� provides a novel uni�ed perspective on time, signals and systems in the CT,
DT and DF domains. As a consequence, it supports uni�ed sequential, parallel
and feedback composition of multi-domain systems. Signals in the CT domain are
represented as functions of time, thereby enabling the accurate inclusion of time
transformations (e.g. time delays) in the formalism, while signals in the DT domain
are values and signals in the DF domain are lists of tokens. For integration, DF
components are embedded in DT components, and DT components are embedded
in CT components. Finally, model transformations based on the formalisms are
used for the design steps of the design �ow. �is involves de�ning a mixed-domain
model from the speci�cation, and partitioning or parallelising the so�ware.

A design �ow based on model-based design and supported by model transforma-
tions was presented in chapter �. It results from the need for a design approach
supporting modelling and simulation of multiple domains including the CT, DT
and DF domain, mathematical de�nitions of modelling components, and model
transformations, which current tools fail to deliver. �is approach is called U��T�,
emphasising that the uni�cation is based on time.

In this chapter we will present the formalisation and the modelling and sim-
ulation framework of U��T�. �e uni�ed formalisation includes the CT, the DT
and the DF domains such that components in these domains can all be speci�ed
in the same formalism as a signal �ow graph. �e CT domain is well established

Parts of this chapter have been published in [KCR:�], [KCR:�] and [KCR:��].

���

C
��

��
��

�.
U
��
T�

in engineering for modelling the environment or the analogue hardware [��]. An
advantage of our approach is that there is no need to discretise the time of contin-
uous signals for simulation purposes, thereby allowing exact time transformation
such as (variable) time delays. �e DT domain is used for representing the digital
hardware of the system. For the so�ware, especially signal processing applications
and multi-core systems, DF models are very useful [��]. Processes in the data�ow
model represent computations and channels represent explicit communications.
As such, it can be used to partition an application. Furthermore, it o�ers methods
to analyse and guarantee consistent real-time performance [��, ���]. �e integra-
tion of DF in the same model therefore is a major advantage.

We will also de�ne composition operators (for sequential, parallel, and feed-
back composition) which are valid for all three domains, leading to a �exible mod-
elling of the system under design, as well as supportingmodel transformations and
design space exploration. �ese composition operators allow for a block diagram
like speci�cation of the design.

U��T� is mathematical in nature, because the speci�cation of an embedded
system is usually given in (or at least supported by) a mathematical form (see sec-
tion �.�.�). Additionally, it allows for correctness preserving transformations and
o�ers a uni�ed abstraction mechanism to integrate CT, DT and DF modelling.
U��T� is unique in being based on function composition instead of value-passing.
Since functional languages are close to mathematics (in the sense that computa-
tions are represented by functions instead of statements), we express the frame-
work and models in the functional language Haskell. Simulation of the design is
done by straightforwardly evaluating the model. U��T� also includes a new execu-
tion model for the DF domain based on the representation of signals and compo-
nents in U��T�.

Essential for model-based design is a single uni�ed model and support for
model transformations. Because of the integrated approach of U��T�, we can ap-
ply model-based design using transformation steps, thereby guaranteeing the cor-
rectness of the design. Guidelines are presented for transformations between and
within domains.

�is chapter is organised as follows. First, a formalisation of the domains is
presented in section �.�, a formalisation that also provides a solution for modelling
time transformations exactly and integrating the DF domain. �is is followed by
an explanation of composition and integration of the domains in a single model in
section �.� and section �.�. Section �.�will elaborate on simulatingmodels with the
U��T� framework. Finally, we present the use of model transformations during the
co-design and partitioning step of the design �ow of U��T�, as well as guidelines
for enabling such transformations, in section �.�.

�.� F������������ �� ��� �������

In this section we propose a novel way to simulate CT/DT systems which is exact
while retaining e�ciency. In the CT domain we consider signals as functions of

���

�.�.
F���

���������
��

���
���

����

time such that the values of a signal can be exactly determined at every instant dur-
ing the simulation. By implementing CT signals as functions of time, time delays
or multi-rate systems can be implemented exactly without losing e�ciency. In the
DT domain we consider signals as piecewise horizontal from the last sample of the
ADCs. �us, our simulation technique coincides with the standard mathematical
modelling of such systems. Additionally, in our approach time is kept local, i.e. ev-
ery continuous component may have its own discretisation of time in time steps.
�us, components may be numerically calculated at a �ne time scale without caus-
ing ine�ciencies in those parts of the system which do not need such a �ne time
scale.

In order to dealwith signals as functions of time, our approach useshigher order
functions to express transformations of signal functions. Hence, we choose for a
functional programming language (Haskell) to simulate a mixed-signal system.

In addition, the DF domain is presented in a way that is consistent with the
representation of signals and components in the CT and DT domain (see also sec-
tion �.�). For this representation, DF signals represent token updates to channels,
andDF components represent processes together with its input channels and �ring
rules. By generalising this notion of signals and systems we can integrate compo-
nents in the DF domain with components in the CT and DT domain. As a conse-
quence, we provide a novel uni�ed perspective of time, signals, components and
systems in the CT, DT and DF domains.

�ere are several execution models for the DF domain (e.g. concurrent pro-
cesses, compilation of data�ow graphs, tagged token model) [��]. �e most com-
mon is to implement data�owprocesses as concurrent processeswith static schedul-
ing and implement the �ring rules as a sequence of “read”, “execute” and “write”
phases [��, ��, ��, ��, ���]. However, these execution models do not match with a
signals and components representation of data�ow, as they all use bu�ers or queues
representing channels, i.e. the channel contents, while signals represent channel
updates. We will present a new execution model for data�ow, following from rep-
resenting data�ow models as DF signals and components.

Integration of the CT domain, the DT domain and the DF domain in one de-
sign framework is a problem that is not satisfactorily solved by existing tools (see
section �.�). In this section we also present an approach which supports the design
process on these aspects, �lling in a gap that is le� by current design tools (such
as [��, ��, ���]) which are able to solve this challenge only partially. We present
a uni�ed formalisation of the CT, the DT and the DF domains such that compo-
nents in these domains can all be speci�ed in the same formalism. �ere are few
tools that integrate the DF domain with the CT and DT domain. Furthermore,
these tools and the many tools that o�er mixed CT and DT modelling (without
DF) have problems with time transformations.

In the context of this thesis, in which we limit ourselves to streaming applica-
tions running on tiledmulti-core architectures, theCT andDTdomains aremainly
relevant for the hardware side of an embedded system, and the DF domain deals
with the so�ware side.

���

C
��

��
��

�.
U
��
T�

�.�.� Continuous time

Consider the following system consisting of a sine source, a time delay and a scope:

∆t

F����� �.�: CT delayed sine wave block diagram

In the CT domain the physical environment of the system or the analogue hard-
ware is represented. In this domain, time is represented by the real numbers, and
a signal is represented by a function over all time. �us, if f is a signal, then f (t)
is the value of that signal at time t. �is leads to the following type de�nitions:

Time = R
SigCT = Time → R

ComponentCT = SigCT → SigCT

where A→ B denotes the class of all functions from A to B. Note ComponentCT is
a “higher order type”, i.e. it has a function (of type SigCT) as argument and delivers
another function (also of type SigCT) as result, thus expressing that a component
transforms signals.

A component can have multiple inputs and outputs. Multiple inputs and out-
puts are denoted as tuples (nested ordered pairs). �e type of a component with n
input signals and m output signals follows as:

ComponentCT = SignCT → SigmCT

�e �rst component in �gure �.� is a sine source and as such does not really
“transform” a signal. �at is, it transforms a vacuous input:

source () = t � a ⋅ sin (ωt)

where a is the amplitude, ω the frequency and t is time. �e notation t � ..t..
denotes the function which maps t to ..t...

�e next component in �gure �.� is a time delay. �e delay can have any value
and can even be variable. Existing modelling tools have problems with a time de-
lay because the time of CT signals is discretised for simulation. Mathematically,
however, a time delay component is simply de�ned as (where δ = ∆t):

delayδ (f) = t � f (t − δ) (�.�)

where f is a signal, i.e. a function of time, and delay adjusts the time of f with δ.
�us, to �nd the function value on time t a�er a �.� time delay, one has to know the
function value at time t−�.�. As the input signal of delay is a function of time, the
time is delayed before f is applied to it. �us we can locally control or change the

���

�.�.
F���

���������
��

���
���

����

time reference of a signal. Note that delayδ indeed is of typeComponentCT . From
the perspective of a CT component the input signal as a whole over all time is trans-
formed, there is no discretisation of time needed for implementation purposes. In
combination with the fact that the continuity of time is immediately present in the
type de�nitions as well, this makes it possible to express the fact that a component
can locally control or change the time reference of a signal.

�e �nal component in �gure �.� is a scope sink. �e scope plots the signal,
hence, as a transformation it may be rather meaningless. �at is, the input signal
is transformed to a vacuous output, with a plot of the signal as a side-e�ect:

sink (f) = t � ()

Now suppose a �Hz sinewith amplitude � and a �.� time delay.�e input signal
of the sink, that is plotted, is then:

delay�.� (source ()) = delay�.� (t � � sin (�π�t)) = t � � sin (�π� (t − �.�))

�e time delay is accurately included in the �nal function, independent from the
time used for simulation. In Simulink and other existing tools it is exactly at this
point that inaccuracies are introduced.

�.�.� Discrete time

We extend the system with an ADC and a signal bias in the DT domain:

∆t A�D +n

Continuous Time Discrete Time

F����� �.�: Mixed CT/DT system block diagram

In the DT domain the digital hardware (such as a FIR �lter) of a system is
represented, in which signals constitute the value of the signal at discrete moments
in time. When an ADC is used to sample a CT signal, these values are also called
samples.

�is leads to the following type de�nitions:

SigDT = R
ComponentDT = SignDT → SigmDT

It is important to note that from the perspective of a component a signal now is
a single value (numerical; here we assume R), i.e. it is a value at a certain time t
as in the CT domain but we have no control over t. �us, from the perspective
of the component, time is abstracted away. �is representation is deliberate as a
DT component should not have control over time (also see section �.�), as the

���

C
��

��
��

�.
U
��
T�

digital hardware it represents does not either (except for sample delays, which are
represented as state). Note that the type of components has the same structure as
in the CT domain.

A component produces output values dependent on the current input sample
and possibly on previous inputs. In order to express the in�uence of the history of
the processing, a component has an internal state which keeps track of the relevant
history. Looking at a component as a signal transforming (mathematical) function
this means that the state has to be modelled as an additional argument to (and
result of) that function. However, it is possible to hide the state, here only explained
brie�y, by directly feeding back the output state leaving only the input signal to be
applied to the function. We will discuss this in more detail in section �.�.�. Hence,
a component can still be seen as a signal transforming function.

Returning to �gure �.�, the ADC component transforms the signal f into a
discretised signal with time interval d. �is is achieved by �ooring the time of the
CT input to the latest sample time:

adcd (f) = t � f (�t�d� ⋅ d) (�.�)

Applying the resulting function to a (local) time t gives the latest value that was
sampled before t. �e output of the adc (which is still a CT function) is then
a piecewise horizontal-function. �is is implemented e�ciently by re-using the
results from the latest sample in between sample times.

�e next component in �gure �.� is a DT component and adds a constant n to
a signal x (as in a bias, or a level shi�er):

addn (x) = n + x (�.�)

Note that x is a numerical value, in contrast to f (from the delayδ speci�cation in
the CT) which is a function of time. �erefore, there is no time in the de�nition of
add. From the perspective of the DT component, the input value x is just a value
at some moment in time; a time-varying value, but that is outside the in�uence of
the component itself.

For amixed domainmodel, components fromboth the CT and theDT domain
have to be connected. �ese components use di�erent types of signals. �e output
of the ADC gives the latest sample for time t and is a function of time. �e addn
component must therefore be changed so it accepts functions of time as input, in
order to connect them:

�addn (f) = t � n + f (t)

�e notation ̂ is called “li�ing” from a function on values to a function on func-
tions. Li�ing changes or embeds the DT component addn to a CT component
�addn in order to combine the component with the CT adc component. However,
as the li�ing is performed on the original de�nition addn , it still has no access to
time t, i.e in the li�ed version n is added to the value of input signal f at time t
regardless of t.

���

�.�.
F���

���������
��

���
���

����

Now suppose a delay of �.� time units, a sample period of �.� time units and
an addition of �. �en the result of (the interesting part of) the signal �ow diagram
in �gure �.� is:

add� (adc�.� (delay�.� (source ())))
= t � � + sin (�π�(t − �.�) ��.�� ⋅ �.�)

Note that the time delays are accurately included in the �nal function. �us, the
�nal function combines CT components and DT components in a single expres-
sion.

�.�.� Data�ow

In the DF domain the so�ware of the system is represented. �e DF domain pro-
vides a model for stream processing with explicit communication.

In this sectionwewill represent data�owmodels as aDF component with input
signals and output signals, i.e. theDF domain is represented in the same formalism
as the CT and DT domain. �is enables the integration of DFmodels with CT and
DTmodels.�erefore, the environment, the hardware and the so�ware of a system
can be represented and simulated in a single uni�ed model.

�.�.�.� Processes and channels

As explained in section �.�.�, a data�ow model or data�ow process network is a
cluster of several independent processes that perform computations, and commu-
nication between these processes is made explicit via channels. A channel is an un-
bounded FIFO token container, where tokens are atomic data elements. Processes
consume and produce tokens by reading from and writing to channels.

�e amount of tokens consumed and produced, the rates, can be variable. A
single-rate data�ow (SRDF)model always consumes and produces a single token, a
multi-rate data�ow (MRDF) model has a �xed token rate at each input and output.
In a cyclo-static data�ow (CSDF) model, the token rates cycle through a number
of phases with �xed token rates (possibly zero) at each phase. Variable-rate phased
data�ow (VPDF) models have a limited form of data-dependent token rates[���],
where the token rate is determined by a parameter from an input channel. Finally,
dynamic data�ow (DDF) model have fully data-dependent token rates.

�.�.�.� Components and signals

Above, in the CT and DT domain, a component transforms signals, and signals
connect components. When applying that approach to the DF domain, a compo-
nent thus corresponds to a node in a data�ow graph, and a signal is the data that
a component sends (and which consists of a sequence of tokens). �is data then
is received by another component which stores the tokens in its internal state. As
soon as it has enough tokens it will execute, immediately followed by sending the
produced tokens.

���

C
��

��
��

�.
U
��
T�

�e above leads to the following type de�nitions, in which Token is an abstract
type to be de�ned for each application separately (the notation [Token] denotes a
list of Tokens):

SigDF = [Token]
ComponentDF = SignDF → SigmDF

Here too, the structure of a component is the same as before. Note that the list of
tokens does not represent all tokens as in a channel, but only the currently commu-
nicated tokens, similar to the current value in the DT domain.

�erefore, the de�nition is di�erent from the standard implementation of data-
�ow in which channels store current and previous (unconsumed) tokens and con-
nect processes, while we use signals for connections (current tokens) and store
(input) tokens in a component with the process. It might seem to the reader that
it is easier to represent processes as components and channels as signals. How-
ever, this representation does not match well with the semantics of components
and signals in the CT and DT domains. �e reason is that signals do not have
state (memory and state is represented using feedback as will be explained in sec-
tion �.�), but channels are token containers and as such do have state. Using signals
with state is not a satisfactory option, because as explained in section �.�.� using a
mathematical function requires state to be an explicit input and output, i.e. read-
ing a token from a channel involves returning the token and the new state of the
channel. �us, a component reading from channels must also return the new state
of all these channels as output. Furthermore, the process writing to this channel
needs this updated state of the channel in order to output a once again updated
channel state including produced tokens. Clearly, this representation of signals is
more complex than just connecting two components.

A better representation of DF is to include the input channel(s) as state of the
component. Signals then represent updates, in the form of tokens, to the channels
(as channels are unbounded, new tokens can always be added to the channel). Com-
ponents also implement �ring rules, which are directly veri�ed against the number
of tokens available in the input channels. �is matches well as �ring conditions
only change with channel updates. Furthermore, the component contains the cur-
rent production and consumption rates and execution phase as state, needed for
determining the �ring rules.

Note that according to this de�nition of DF components, a component trans-
forms a signal each time it receives an update, also in case it has not collected
enough tokens to �re (or in case a process has an execution time that has not yet
elapsed). To model that, it is possible that a component sends an empty signal con-
taining zero tokens, i.e. a component, applied to an input signal, that does not �re
results in an empty output signal. Although an empty signal does not indicate a
change to the input channels, it does indicate an execution step so that components
update the progressed time represented as execution steps. We will come back to
this in the section about integrating the domains (section �.�), because then execu-
tion steps are linked against “real” time in the CT and DT domains. �e other way

���

�.�.
F���

���������
��

���
���

����

around, i.e. a signal contains more tokens than a component needs in order to �re,
is modelled by allowing a component to execute more than once (if possible), as
standard in data�ow models, and to combine the produced tokens (in order) in a
single result.

�.�.�.� De�nitions

Similar to the CT and DT domain, the user speci�es the functionality of the com-
ponent and the connections between them. U��T� takes care of managing channel
contents, �ring rules and execution.

Consider a DF component that consumes three tokens with a �xed rate, where
the tokens are numbers, and calculates their average. �e functionality of the pro-
cess is denoted as:

mean� ([x , y, z]) = [(x + y + z) ��]

where the input signal of mean� is a list of three tokens [x , y, z], and the output
signal is a list containing the averaged result as a single token. Clearly, this process
can only execute when there are three values available and produces one value. It
is thus a MRDF process with a token rate of � for the input and � for the output.
Assume an execution time of the process of � execution step. Finally, a DF model
typically has initial tokens in the channels. Suppose, initially there are two tokens
(� and �) in the input channel.

�e average component as awhole, i.e. its functionality togetherwith its initial
state, is now formulated as:

average = �mean� ⇑ S
where S = ((�, �, �) , [] , [�, �]) (�.�)

Herein, S is the initial state with the token rates and execution time as the �rst
elements of the tuple, the currently processed tokens as the second element of the
tuple (initially empty and explained further below), and the input channel contents
as the third element of the tuple.

�e � operator and the ⇑ operator are implemented by the U��T� framework.
�e above is all that a designer needs to de�ne when using the DF domain. �e �
operator is required to add the management of channel contents and �ring rules
to mean�, so as to embed the functionality de�ned in mean� in a DF component
average. �e ⇑ operator is required to provide the initial state of the component.
�ese operators are discussed in more detail in the next section.

�.�.�.� De�nitions provided by U��T�

�e complete structure of a DF component is illustrated in �gure �.�.
�e functionality of a data�owprocess is denoted by P.�e operator� extends

the functionality of P with �ring rules and execution. �e � operator takes care
that when the component is applied to a signal i, it will:

���

C
��

��
��

�.
U
��
T� SignDF

⇑

�

PI

R

T

�ring
rules

Component

SigmDF

F����� �.�: DF component structure

• add the tokens from i to its internal state,
• then apply the function P as many times as possible (possibly zero times),
each time removing input tokens from the state,

• and �nally packing the results in an output signal o.
�e� operator returns a function on state.�e ⇑ operator applies this function

to the initial state S following it. �e state (with type S) of a DF component is a
�-tuple:

S = (R, T , I)

�e �rst element of the state is a data structure for the token rates (of typeR):

R = (rni , r
m
o , t)

where rni are the token rates for n input channels, rmo the token rates form outputs,
and t the execution time, corresponding to (�, �, �) in the example above.

When a process �res, tokens are consumed from the input channels. However,
the output is typically not produced instantaneously, i.e. the execution time of a
process is also modelled. �is requires that the produced outputs are remembered
until the execution time has passed. In addition, there can bemultiple outstanding
outputs as a process can �re as long as there are enough input tokens. �erefore,
the second state element (of type T) is a list of “timers” for storing outputs as state
until their execution time has passed (as pairs of Time and SigmDF):

T = [(Time , SigmDF)]

and is initially an empty list.
�e �nal state element (of type I) is the content of the input channels:

I = SignDF

which is initially [�, �] in the example.

���

�.�.
F���

���������
��

���
���

����

�e functionality of a DF process P of type P is a function from inputs to
outputs:

P = I
n
→ O

m

Note that the input and output of P are of the same type as the inputs and outputs
of the DF component:

ComponentDF = SignDF → SigmDF

However, for the component the signals are channel updates, while for the process
P they are the ri input tokens and ro output tokens of the process.

�e� operator convertsP to a function on input signals and state. So the type
of � is:

� ∶ P → (S × SignDF → SigmDF × S)

Herein, the resulting function has a current state (S of type S) and input channel
updates (i of type SignDF) as inputs, and returns the output channel updates (o) and
the updated state (S′) as outputs.

A�er applying the above function to an initial state and an input i, it returns
output o and the next state S′. �e function is then already applied to next state S′
using so-called partial application while the next input will follow later. �e result
is then an output o and a new function to use for the next input i. By repeating this
each time, the state is not visible from the outside but hidden in the next function
to use. �is is performed by the ⇑ operator:

⇑ ∶ (S × SignDF → SigmDF × S) × S → ComponentDF

�us, the ⇑ operator applied to the result from the � operator applied to P, and
the initial state S result in a DF component ComponentDF .

�e state of a DF component contains all the information needed for execution.
At execution:

• new tokens (from the signal) are added to the input channels of the compo-
nent (with ++),

• the component is recursively executed (exe) as long as �ring conditions are
valid,

• and the timer structure T is checked if any execution times have passed re-
sulting in output tokens o by the function timer.

���

C
��

��
��

�.
U
��
T�

�ese tasks are de�ned by the � operator:

� (P) = (S , i)� (o, S′)
where

(R, T , I) = S
I′ = I ++ i

(T ′ , R′ , I′′) = exe (P, (T , R, I′))
(o, T ′′) = timer (T ′)

S′ = (R′ , T ′′ , I′′)

where ′ indicates an updated structure. �e �rst de�nition in the “where” clause
unpacks the state S into its three elements. �e next three de�nitions correspond
to the three steps presented above. �e �rst step updates I by adding new tokens i
to it and returning the updated input channel contents as I′. �e next two de�ni-
tions will be discussed in more detail below. �e last de�nition packs the updated
elements of the state together in S′.

�e exe function executes a process P if enabled by the �ring rule. �erefore,
it uses the rate structure R to determine how many tokens are needed for �ring.
�e current input channel content I′ is checked to determine if enough tokens are
available. If a process can �re the output tokens are added to the timer structure
together with the execution time. �e de�nition of exe is as follows:

exe (P, (T , R, I)) =
�
��
�
��
�

exe (P, (T ′ , R′ , I′)) , if f ire
(T , R, I) , otherwise

where
f ire = check (rni , I)

(rni , r
m
o , t) = R
(i , I′) = read (rni , I)

T ′ = T ++ (t, P (i))
R′ = (rni , rmo , t)

Herein, f ire is a boolean that indicates if the process can �re. If not, T , R and I
are returned as is, i.e. nothing changes. Otherwise, the input and output token
rates and execution time are extracted from R. �e input token rate ri is used to
read that many tokens from the input channels I. �e process P is applied to the
resulting inputs i to compute the output tokens.�e outputs are added to the timer
structure T together with execution time t. �e updated state (T ′ , R′ , I′) is used
for the recursive de�nition of exe, so the exe is repeated until the �ring rule is
false.

���

�.�.
F���

���������
��

���
���

����

In the de�nition of exe, check determines if a process can �re by comparing
the input channel contents with the input token rate required for �ring:

check (rni , I) =
�
��
�
��
�

True , if �I� > rni
Fal se , otherwise

where �I� is the number of tokens in the channel.
Finally, the function timer updates the timer structure T by decreasing the

execution time of each time-value pair with one and returns all output tokens of
which the execution times have passed (in order):

timer ((t, v) ∶ T) =
�
��
�
��
�

([v], []) ∶ timer(T) , if (t − � ≤ �)
([], [(t − �, v)]) ∶ timer(T) , otherwise

Herein [] denotes an empty list, and ∶ is the list constructor operator. Note that
this is a recursive function for which the output tokens whose execution time have
passed (v) are collected in a list as the �rst argument of the tuple, and for the rest
the execution time is decreased by � (t − �, v).

�.�.�.� Generalisation

�ere are several classes of data�ow models. �e mean� example was a MRDF
process. In fact we have generalised the rate structure R to all data�ow classes
except DDF by noting that:

SRDF ⊂ MRDF ⊂ CSDF ⊂ VPDF

�e most general rate structure, the one for VPDF�, is a �-tuple:

R = �p, tk , ql , ratei , rateo�

with the current execution phase p, a list of execution times per phase (tk), param-
eters used to compute the current rate (ql), and two rate functions ratei and rateo
which compute the input and output depending on p and ql . For example, the
token rate at the input for phase p and parameter ql is:

rni = ratei �p, q
l
�

Besides changing the rate structure, the function exe must also be changed
accordingly as follows. �e updated rate structure is now de�ned as:

R′ = �(p + �) mod �tk �, tk , ql
′
, ratei , rateo�

where �tk � denotes the number of elements of tk , andmod is themodulo operation.
�us, each execution or �ring, the phase is increased by one modulo the number
of phases.

�for more about VPDF see [���]

���

C
��

��
��

�.
U
��
T�

We have de�ned functions for each of the di�erent classes of data�ow to gener-
ate an R structure. SRDF, for example, only has an execution time; the token rates
are always � and it has no phases or rate parameters. �ese functions also initialise
T to an empty list and initialise I with initial tokens in . �e functions return a
state structure S and can therefore be used directly following the ⇑ operator. �e
generation functions are de�ned as:

sr (t, in) = ((�, [t] , () , _� �n , _� �m) , [] , in)
mr ((t, rni , r

m
o) , i

n
) = ((�, [t] , () , _� rni , _� rmo) , [] , i

n
)

cs ��tk , rn×ki , rm×ko � , in� = ���, tk , () , (p, _)� rn×ki !!p� , [] , in�

vp ��tk , ql , ri , ro� , in� = ���, tk , ql , ri , ro� , [] , in�

where sr creates a rate structure and state for SRDF, mr for MRDF, cs for CSDF
and vp for VPDF.

�.�.� Representation in Haskell

�e mathematical formulations of the CT, DT and DF domain can be straightfor-
wardly represented in a functional language. In particular the support for higher-
order functions to express signal transformations, and partial application (a func-
tion is already applied to part of the arguments, while the rest follows later), that
functional languages o�er, are essential. Furthermore, side-e�ects are not allowed
in any of the domains, so we choose for the pure (side-e�ect-free) functional lan-
guage Haskell. Haskell also provides a type class feature to conveniently overload
algebraic and composition operators, so that the same operator can be used in all
domains. �at means that the type of the signal determines the speci�c operator
implementation that is used.

We will �rst present the representation of the delay component as presented
for the CT domain, and the adc and add components as presented for the DT
domain. �e delay, adc and add components are straightforward reformulations
of equations (�.�) to (�.�) as can be readily checked (\t -> corresponds to t � and
the standard function floor returns the greatest integer not greater than x):

d e l a y d e l t a f = \ t −> f (t−d e l t a)
adc d f = \ t −> f (f l o o r (t / d) * d)
add n x = n + x

Note that these functions have two arguments, one of which was given in the form
of a subscript in themathematical formulation. In the Haskell formulation the �rst
is given when used as a component, while the second (f and x) represent the input
signals which follow when a component is composed with another component.

For implementing the DF domain, the df operator is the Haskell formulation
of the� operator and ˆˆˆ is the formulation of the ⇑ operator. �e DF component
average (equation (�.�)) is then implemented as:

a v e r a g e = d f mean_� ^^^ [� , �]

���

�.�.
C
��

��������

�e de�nition of df is exactly the same as �, and ˆˆˆ as ⇑, i.e. all de�nitions are
immediately readable as Haskell code.

Of interest to the representation of the DF domain is the use of type classes by
the framework. Type classes provide a polymorphic interface, so that the imple-
mentation is generic with respect to the number of inputs and outputs used by a
DF process, i.e. one may overload the same operation symbol for di�erent types
by making some type a an instance of a type class and de�ning the operations of
the type class for type a. All the provided de�nitions of the DF domain are poly-
morphic, except for using channels (++, check, read) and generating token-rate
data-structures (sr, mr, cs, vp), as these are directly dependent on the number of
inputs.�e inputs of a data�ow process can have di�erent types, therefore, they are
implemented as tuples because Haskell does not directly support heterogeneous
lists (lists are homogeneous). However, a tuple is a type and Haskell has strong
typing. Hence, an implementation must be provided for every combination of n-
tuple input and m-tuple output. We have implemented these functions for up to
four inputs and outputs (adding more is straightforward).

�.� C����������

�e standard mathematical interpretation of a signal �ow diagrams is that the ar-
rows express signals and the components denote signal transformations. Further-
more, the diagram as a whole then is a composition of these transformations.

�e CT, DT and DF domains presented in section �.� all have components that
transform input signals to output signals. �is is intentional, so we can provide
generic rules for composition in all domains. �e generic component structure is
de�ned as:

Component = Sign → Sigm

Note that Sign can be any combination of signals from the various domains and is
implemented as a nested tuple, e.g. (SigCT , (SigDT , SigDF)).

Next, we will de�ne operators for sequential, parallel and feedback composi-
tion. With these composition operators we can de�ne arbitrary signal �ow dia-
grams [��].

φ
f

ψ
ψ(φ(f))

F����� �.�: Sequential

φ
f φ(f)

ψ
g ψ(g)

F����� �.�: Parallel

φ
f g

h

F����� �.�: Feedback

���

C
��

��
��

�.
U
��
T�

�.�.� Sequential

Sequential composition (illustrated in �gure �.�) combines components sequen-
tially and is de�ned as:

φ ▷ ψ = f � ψ (φ (f)) (�.�)

where φ and ψ are transformations, i.e. components, and ▷ is the operation
to compose transformations sequentially. �at is, φ ▷ ψ is the transformation
that takes a signal function f as an argument and determines its result by �rst
applying φ to f and then ψ to the resulting signal function. �us, ▷ returns a
new component with the input signal f of φ and the output signal of ψ.

As an example, consider a sine source that is accelerating into the direction
of an (stationary) observer which causes a change in the observed frequency; the
Doppler e�ect. �e resulting signal increases in frequency with time, which is
modelled with time scaling in the CT domain as:

⋅t

F����� �.�: Accelerating source

and denoted as:

source ▷ tscal ea ▷ sink

�e source and sink were de�ned in section �.� and are repeated here for clarity.
�e de�nition for tscal ea is:

source () = t � sin (t)
tscal ea (f) = t � f (t ⋅ (a ⋅ t))

sink (f) = t � ()

As before, these de�nitions can be straightforwardly represented in Haskell, and
evaluated for simulation. �e simulation result is shown in �gure �.� and as ex-
pected shows a frequency that increases over time.

It is sometimes useful to connect a single output of a component to multiple
inputs of another components, thereby duplicating the signal. Since the number of
inputs to connect to is known from the context of the sequential operator, we can
de�ne a generic de�nition:

φ ▷∗ ψ = f � ψ (g , g , . . .), where g = φ(f)

Herein, φ is applied to the input signal f , and the resulting output signal g is used
for as many input signals of ψ as needed.

���

�.�.
C
��

��������

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.�: Chirp signal

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.�: Two added sources

�.�.� Parallel

Likewise, parallel composition (�gure �.�) is de�ned as:

φ ∥ ψ = (f , g)� (φ (f) ,ψ (g)) (�.�)

i.e. multiple inputs are represented as tuples and the composition connects φ to
the �rst and ψ to the second.

As an example, consider the following system:

∆t

+

F����� �.��: Simple beamformer block diagram

�e system consists of two sources with di�erent delays which are added, corre-
sponding to a simple beamformer. �is system is denoted as:

(source� ∥ (source� ▷ delayδ)) ▷ (+) ▷ sink

�e simulation results are shown in �gure �.�.
An alternative de�nition is:

system = (φ� ∥ φ�) ▷ (+) ▷ sink
where
φ� = source�
φ� = source� ▷ delayδ

���

C
��

��
��

�.
U
��
T�

By using a where clause, we introduced hierarchy, i.e. in the de�nition of system
we de�ne two blocks to be in parallel (φ� and φ�) and in the where-clause we de�ne
what these blocks are. So structural hierarchy is easily achieved by naming subsys-
tems. �is is possible because a composition of components is itself a component.

It is sometimes useful to connect a duplicate of a single component to each of
the input signals in parallel. Since the number of inputs known from the context
of the parallel operator, we can de�ne a generic de�nition:

∥
∗ φ = φ ∥ φ ∥ . . .

Herein, ∥∗ creates as many duplicates of of φ (in parallel) as needed.

�.�.� Feedback

In many systems there is a signal later in the system that is also used earlier in the
system, i.e. there is a feedback loop in the system. Figure �.� shows a component
φ with two inputs f and h and two outputs g and h. �e signal h forms the feed-
back loop, i.e. the second output of φ is also used as input. From the outside, the
resulting component only has an input signal f and an output signal g. However,
g is determined by applying φ to f and h, where h is also determined by applying
φ on f and h resulting in a recursive dependence. �us, at some point φ must be
able to determine h at the output using only f . Feedback composition (�gure �.�)
is then de�ned as:

� φ = f � g , where (g , h) = φ (f , h) (�.�)

Herein � connects the second output of φ to its second input, thereby returning
a component with input f and output g.

As an example we take an RC low-pass �lter:

R CVin Vout

F����� �.��: RC low-pass �lter

Applying Kirchho� ’s current law we get:

Vin (t) − Vout (t)
R

= C
dVout (t)

dt

which we can rewrite to:

Vout (t) =
�
RC ∫ t

−∞(Vin (t) − Vout (t)) dt

���

�.�.
C
��

��������

and which corresponds to the following block diagram:

Vin − ∫ ⋅
�
RC Vout

F����� �.��: RC �lter block diagram

�is block diagram corresponds to a component with Vin as input signal and
Vout as output signal. Furthermore, it has three sub-components (−, ∫ and ⋅��RC)
which are sequentially connected and of which the result is fed back to the input.
Hence, it is de�ned in U��T� as:

f i l terRC =� �(−) ▷ ∫ ▷ �⋅
�
RC
��

�.�.� Representation in Haskell

�e composition operators ▷ , ∥ and � of equations (�.�) to (�.�) are written
in Haskell as >>>, || and loop respectively, and are also in direct correspondence
to their mathematical de�nition:

ph i >>> p s i = \ f −> p s i (ph i f)
ph i | | p s i = \ (f , g) −> (ph i f , p s i g)
l oop ph i = \ f −> l e t (g , h) = ph i (f , h) in g

�ese de�nitions are exactly the same as inmathematics, except that the arguments
f, g and h are not written between brackets as is standard in Haskell. Also in these
representations there is a recursive dependence on h in loop. �erefore, the ar-
guments (h in particular) of phi should not be evaluated before phi is applied
to them, otherwise there is an evaluation of h that will never terminate. Haskell
supports delaying the evaluation of an expression (such as the arguments of a func-
tion) until it is actually needed, called lazy evaluation, to allow the above de�nition
of loop.

�e representations of ▷∗ and ∥∗, written in Haskell as >>>* and ||*, are
a little more involved. As mentioned, multiple input signals are represented as tu-
ples in Haskell, as the input signals can have di�erent types and lists must have a
homogeneous type in Haskell. However, each n-tuple requires a di�erent imple-
mentation for each n. �erefore, we have to de�ne type classes for >>>* and ||*
and provide instances for each n-tuple.

�e type class CompSeq for >>>* is de�ned as:
c l a s s CompSeq b c where

(> > >*) : : (a −> b) −> (c −> d) −> (a −> d)

Here c represents an n-tuple of type b, where the number of elements of c deter-
mines which instance to use. �e types a and d are free, i.e. they are not restricted
by the type class. We must provide an instance for each n-tuple:

���

C
��

��
��

�.
U
��
T�

. . .
i n s t a n c e CompSeq (b) (b , b) where

ph i >>>* p s i = \ f −> l e t g = ph i f in p s i (g , g)
i n s t a n c e CompSeq (b) (b , b , b) where

ph i >>>* p s i = \ f −> l e t g = ph i f in p s i (g , g , g)
. . .

where the output signal g of component phi is used for each of the inputs of psi.
�e actual number of inputs of psi determines which instance is used.

Similarly, we de�ne a type class CompPar for ||*:
c l a s s CompPar a b c d where

(| | *) : : (a −> b) −> (c −> d)

Here c represents an n-tuple of type a, and d represents an n-tuple of type b, and
the number of elements of c and d determines which instance to use. Again, we
must provide an instance for each n-tuple:

. . .
i n s t a n c e CompPar a b (a , a) (b , b) where

(| | *) p s i = \ (f , g) −> (p s i f , p s i g)
i n s t a n c e CompPar a b (a , a , a) (b , b , b) where

(| | *) p s i = \ (f , g , h) −> (p s i f , p s i g , p s i h)
. . .

where the number of input signals determines which instance is used and thus how
many copies of psi are created.

�e requirement to specify an instance for each n-tuple is a Haskell restriction,
not of the mathematical de�nitions. �is forms a practical issue, as U��T� must
now provide many instances of essentially the same concept. Of course the de�-
nitions are regular and can be generated, however, a generic de�nition over any
size tuple would be preferred. Furthermore, it is sometimes necessary to explicitly
provide the types of signals or components, if the type interference in Haskell can
not derive the right types. Solutions to these problems are an ongoing discussion
in the Haskell community and fall outside the scope of this thesis. For the use in
this thesis, the provided de�nitions are su�cient.

�e composition operators can be used to compose components of arbitrary
domains, e.g. a CT component can be composed with DT and DF components
etc. �e composition operators are overloaded to support this, e.g. in case phi is
a CT component and psi is a DT component, psi is automatically converted to
or embedded in a CT component before being composed. �e same holds for DF
components. �is is explained in detail in section �.�.

�.�.� Algebra

Normal algebraic functions operate on values, but signal transformations operate
on signal functions. We can transform a normal function so that it operates on
signals, called li�ing. Li�ing makes it possible to use the same operators such as
√ , + and ∗ as components in all domains.

Unary operations, such as√ or +�, change the signal independent of the time:

�� f = t �
�

f (t)

���

�.�.
C
��

��������

Implementation is straightforward:
s q r t f = \ t −> s q r t (f t)

Binary operations such as + and ⋅ are similar; we evaluate both inputs at time
t and then apply the operator:

f +̂ g = t � f (t) + g (t)

As mentioned before, Haskell has type classes. We can use that abstraction
mechanism to de�ne e.g. arithmetic operators for numerical functions. �e type
class Num has some standard arithmetic operations, so we can use them to compose
functionals:

i n s t a n c e Num (Time −> v a l u e) where
f + g = \ t −> (f t) + (g t)
f − g = \ t −> (f t) − (g t)
f * g = \ t −> (f t) * (g t)
. . .

where value is some type of the values.
For the DF domain, a unary operator is applied to each token of signal:

�√
�x = �
√
x� ,
√
x� ,
√
x� . . .�

�is can be seen as li�ing an operation to operate on a vector, in our case the DF
signal. As a vector can be seen as a function from indexes to values, this is in
accordance with li�ing an operation to operate on functions. �e Haskell function
that performs this is called map:

h a t s q r t x s = map sq r t x s

Binary operations similarly perform their operation pairwise on the elements
of the lists:

�x +̂ �y = �x� + y� , x� + y� , x� + y� . . . �

In Haskell the function that performs this is called zipWith, which we use to
de�ne the Num type class for lists of tokens:

i n s t a n c e Num ([token]) where
x s + y s = zipWith (+) x s y s
x s * y s = zipWith (*) x s y s
x s − y s = zipWith (−) x s y s
. . .

Note that these li�ed operators only provide the functionality of a data�ow
process. In order to de�ne a DF component, we have to extend this functionality
with �ring rules and channelmanagement using the� operator, andwith an initial
state using the ⇑ operator, e.g.:

plusDF = � (+) ⇑ ([], [])

���

C
��

��
��

�.
U
��
T�

�.�.� Calculus

Until now we have only discussed algebraic composition (we did not de�ne the
integral in the feedback example of section �.�.�), for which the interesting sim-
ulation times are at the sample times of the ADC. Calculus is about change over
time. For example, the voltage over the capacitor in �gure �.�� is proportional to
the integration of the current through the capacitor until that time. We can solve
the integral (or a di�erential) symbolically or numerically. A problem with sym-
bolic integration is that for many functions an analytical solution does not exist.
�us, simulation tools solve the general case with numerical integration. Haskell
has good possibilities to de�ne analytical solutions to integral de�nitionswhenever
possible, but we will use numerical integration for generality, as in the standard ap-
proach in simulation tools.

�e component for integration is de�ned as:

∫ (f) = t � ∫ t

t�
f (t) dt

Numerical integration relies on a recurrence relation to approximate the inte-
gral. A simple numerical integration method is the Euler method�:

yn+� = yn + h ⋅ f (tn) , where h = tn+� − tn
So for multiple steps:

yt = yt� +
n−�
�
�
h ⋅ f (tn), where n = (t − t�) �h, ti+� = ti + h (�.�)

Here, h is the approximation time step that is used locally. For this de�nition, t
determines the number of steps n to compute from time t� using time step h. Fur-
thermore, tn is the time for step n to evaluate input signal f at.

Note that for each use of the integral component a di�erent approximation step
can be chosen by the designer. �e accuracy of the approximation depends on the
correspondence between the dynamics of the signal and the step size. As this can
di�er at di�erent places in the system, it is very useful to be able to de�ne the time
resolution per integral (or di�erential). However, to the best of our knowledge, all
simulation tools use a single implicit time step to update the whole system, there-
fore potentially unnecessarily calculating simulation results formuch of the system.
We conjecture that current tools use a global simulation time step, because it is dif-
�cult to determine the di�erent time steps at each place in the system. However,
with our approach, by locally applying the time steps, the time used for evaluation
is only propagated back to the input signal, i.e. only the input signal and the com-
ponents that determine that input signal are evaluated using the local time step. So,
signals at the input are evaluated each approximation time step, but how o�en the
result at the output and the following blocks is evaluated is not in�uenced.

�Of course we can also use more sophisticated numerical algorithms such as Runge-Kutta, which
determines the time step based on the tolerance in accuracy of the result.

���

�.�.
C
��

��������

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Integration of a sine wave

An example is the following system:

∫ t
�

F����� �.��: Integrator

which is implemented as:

source ▷ ∫ h ,(t� ,y�) ▷ sink

with h the approximation step size, t� the initial time, and y� the initial value of
the integral.

Following from equation (�.�), the input is calculated from time t� to t in steps
of h. Each result is multiplied with h to get the approximate area and these results
are summed and added to the initial value. �e integration of a sine wave with ��
steps per sample period is shown in �gure �.��, illustrating its use. Note that we
provide the sample time t to the integral function, which then itself determines
how o�en to calculate the input signal f using the step size.

�e integral de�nition includes a recurrent dependence on itself. �is can also
be represented with a feedback composition operator (�):

∫ = (⋅h)▷ � ((+) ▷
∗
(id ∥ delayh))

where id is the identity function and ▷∗ duplicates the input signal, which is
delayed. �e delayed signal is fed back to one of the inputs of the addition, i.e. one
of the addition arguments is a delayed version of itself, which recurses back until
the initial value.

In these implementations, the integral is recalculated from time � to t each sim-
ulation step. A more e�cient implementation that re-uses previously calculated
values needs state. State is discussed in section �.�.�.

���

C
��

��
��

�.
U
��
T�

�.� I���������� �� ��� �������

So far, we have discussed how to de�ne components in the various domains and
how to compose components within each domain. Now we will discuss how to
compose mixed CT, DT and DF components for a multi-domain simulation. �is
is achieved by embedding a DF component in a DT component and a DT compo-
nent in a CT component such that for simulation purposes the CT domain is the
unifying domain.

Below we �rst describe how the designer can explicitly embed the DT domain
in the CT domain, and the DF domain in the DT domain. Next we describe how
the Num class (section �.�.�) automatically embeds these domains. Finally we give
an outline for a further automatisation of the embedding of the domains such that
it also works for arbitrary operations.

�.�.� DT⇒ CT

To embed a DT component into a CT component it must accept a function of time
instead of a single value (see section �.�), i.e. we have to “li�” the DT component to
a CT component. In section �.�.� we introduced the notation�addn for the “li�ed”
version of addn . Here we will generalise that notation into a li�ing operator̂ .

For unary functions the operator ̂ is de�ned as follows:

ĝ (f) = t � g (f (t))

whereas for binary operations (say h) it is de�ned as follows:

ĥ (f , g) = t � h (f (t) , g (t))

Clearly, this can be generalised immediately for n-ary functions. So, when a de-
signer has a DT component C in his design, he can simply replace it by Ĉ to get a
CT component. However, in the chosen application domain the typical operations
that are performed are numerical. Here, the Num class in fact already performs the
li�ing operation automatically (see section �.�.�).

Example DT signal transformations are not applied for all time, but only at the
sample times. �e boundary between the CT and DT domain is the ADC, which
samples the CT domain to provide that value to the DT domain. �us from a CT
perspective, the ADC �oors the time to the latest sample time and holds that value
until the next sample time (with d the sample period) as we have seen before:

adcd (f) = t � f (�t�d� ⋅ d)

So the composition of a CT component with a DT component is a CT component,
but one that only evaluates and returns the result at the latest sample time for any
time in between.

���

�.�.
I����������

��
���

���
����

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Delayed, sampled and biased

As an example, let us revisit the following mixed CT and DT domain system:

∆t A�D +n

Continuous Time Discrete Time

F����� �.��: Mixed CT and DT domain system

which is de�ned as (with a delay of �.�� time units, a sample period of �.�� time
units and an addition with �.��):

source ▷ delay�.�� ▷ adc�.�� ▷ add�.�� ▷ sink

Note that in this example the necessary li�ing is taken care of by the Num class. �e
simulation results are shown in �gure �.��, showing a delayed, sampled and biased
sine wave as corresponding to the de�nition of the mixed-domain model.

In case a DT component is composed with a CT component there are two sit-
uations. If there is a CT component connected somewhere in front of that DT
component, that composition causes the DT component to be li�ed to a CT com-
ponent. If there are only DT components in front of that component, the sample
time of those DT signals must be provided. �is is achieved by rated with d the
sample period, which is de�ned as:

rated ,(t� ,v�) (φ) = t �
�
��
�
��
�

(v� , (t� , v�)) , if (t < t� + d)
(v , (t� + d , v)) , otherwise

where
v = φ ()

Herein, rate uses state to remember the last sample value v� to output until the
time t is larger than the saved sample time t�. If a next sample v is output, φ is
evaluated, where rate required φ to be a source component with a vacuous input.

���

C
��

��
��

�.
U
��
T�

Automatic li�ing in general It falls outside the scope of this thesis to discuss
automatic embedding of the DT domain in the CT domain in detail, for that too
much knowledge of Haskell is needed (see [��, ��, ��, ��]). Besides, as mentioned
above, it is not necessary for the chosen application domain. Nevertheless, we im-
plemented this automatic embedding and give an outline of it below.

�e implementation uses the Haskell type class abstractionmechanism. In par-
ticular, the type classes Functor and Applicative are used to express li�ing, and
the type class Category is used to de�ne composition operators such that li�ing
is included.

For unary functions, the type Time -> value has to be turned into an in-
stance of the type class Functor (Time is a synonym for the type Double, value
stands for the relevant type of values). In that type class an operator fmap exists,
which has to be rede�ned for the instance of the functor that we need:

i n s t a n c e Functor (Time −> v a l u e) where
fmap g f = \ t −> g (f t)

Hence, for unary functions, ̂ is represented by fmap.
For n-ary functions in general, the type Time -> value has to be turned into

instance of the type class Applicative. �e de�nitions of the appropriate opera-
tors in the type class Applicative then are:

i n s t a n c e Ap p l i c a t i v e (Time −> o) where
<�> op = \ _ −> op

f <*> g = \ t −> (f t) (g t)

We de�nê for unary, binary, ternary, . . . operations as follows:
<^> op f = <�> op <*> f
<^^> op f g = <�> op <*> f <*> g
<^^^> op f g h = <�> op <*> f <*> g <*> h
<^^^^> op f g h k = <�> op <*> f <*> g <*> h <*> k

Note that the unary version <^> coincides with fmap above.
Embedding is only required for sequential composition of mixed domain com-

ponents. For parallel composition, di�erent domains can coexist in parallel. For
feedback composition, there is typically a dependence between the input feedback
signal and the output feedback signal, causing the sequential composition within
the feedback loop to li� the feedback signal to the same domain. Otherwise, the
feedback composition does not really represent a loop and the de�nition will only
be valid if the types match.

In order to indicate how composition operators can automatically perform the
li�ing operation, we restrict ourselves to composition for unary functions as an
example. �us, let φ be a CT component, and ψ a DT component. In order to
de�ne φ ▷ ψ in Haskell, we de�ne a type class Lift with a composition operator
>>>:

c l a s s L i f t a b c where
(>>>) : : a −> b −> c

As mentioned before, all domains ultimately (for simulation purposes) have to be
embedded in the CT domain. �us, we have to build instances of the Lift type

���

�.�.
I����������

��
���

���
����

class for all combinations of the CT, DT and DF domain. We will present an ex-
ample of a composition of a CT component with a unary DT component. In this
example the type parameter a becomes ComponentCT, the type parameter b be-
comes ComponentDT, and c becomes ComponentCT. �is leads to the following
instance of the type class Lift:

i n s t a n c e L i f t ComponentCT ComponentDT ComponentCT where
ph i >>> p s i = ph i >>> (<^> p s i)

�us the composition operator from the CT to the DT domain �rst applies <^> to
the DT component, such that <^> psi now also is a CT domain component. For the
composition operator >>> on the right hand side the correct version of the >>> has
to be chosen. However, in order to give Haskell su�cient information such that it
can decide which instance to choose, functional dependencies on types have to be
used.

Above we described the basic idea how the type class Lift is used for de�n-
ing a composition operator which integrates the various component types. As said,
presenting the details of the full implementation falls outside the scope of this the-
sis.

�.�.� DF⇒ DT

DF signals are a list of tokens, while DT signals are values. �us, to embed a DF
component in a DT component, it must accept single values (samples) instead of
a list of tokens. �is presents a problem, because in DF models data is abstracted
away into tokens, i.e. tokens are arbitrary data, while samples are values. We could
also abstract from data in the CT and DT domains; CT signals would then be func-
tions of time to tokens, but these have no sensible physical representation. So in-
stead we limit embedded DF models to values as tokens at the boundaries. �is
is achieved by writing the value from the DT domain as a token into the input
channel of the DF component at the sample time. So a value from a DT signal
is converted to a DF signal consisting of a singleton list with that value as token,
i.e. from the perspective of the data�ow model, the DT domain produces single
tokens at a �xed rate. Vice-versa, a single token output DF signal is converted to a
DT value (possibly with a delayed sample time because of the execution time).

Automatic li�ing in general We shortly mention the possibilities to let the com-
position operators do the packing-unpacking (<~>) automatically:

<~> p s i = \ x −> l e t [y] = p s i [x] in y

By means of example we give the de�nition of >>> for DT to DF:

i n s t a n c e L i f t ComponentDT ComponentDF ComponentDT where
ph i >>> p s i = ph i >>> (<~> p s i)

���

C
��

��
��

�.
U
��
T�

�.�.� Uni�ed model

Now components from all domains can be composed (by taking the DT domain as
an intermediate step in case of a DF component). An example of a mixed domain
system then follows as:

source ▷ delay�.� ▷ adc�.�� ▷ add�.�� ▷ average ▷ sink

where source, delay�.� and adc�.�� are CT components, add�.�� and sink are DT
components, average is a DF component, and their composition system is a CT
component. �e simulation results are shown in �gure �.��. �e average compo-
nent averages three samples, as de�ned in section �.�.�, and therefore only outputs
a token every three input tokens or samples from the DT domain. In between no
output is provided, which is plotted as zero.�e plot function connects those point
with lines, as shown.

�.�.� Time

As said, the DF domain is untimed and only models the ordering of tokens. In the
DT domain samples are linked to a sample time. So from the perspective of time,
which is of primary importance in a simulation model, a DTmodel contains more
information than a DF model and it makes sense to embed a DF model in a DT
model. Because the DT values are linked to a sample time, the DF process now is
extended with time. �erefore, execution time of a DF process also has meaning;
the produced tokens a�er execution are considered values in the DT domain (with
a delayed sample time because of the execution time).

For a simulation, we are interested in the behaviour of the system, i.e. the re-
sults of the model over time. �erefore, simulation is a CT process, i.e. we evaluate
the model over time. As such, it makes sense to embed a DTmodel in a CTmodel
for simulation. �is is still e�cient, because time is �oored to the latest sample
time (as with the ADC) and the sample value is re-used for every evaluation using
state.

�.�.� Multi-rate

Multi-rate systems containDTdomain samples that are generated byADCs operat-
ing at di�erent rates. Such systems are typically problematic for simulation because
the data must be aligned with a global clock tick. �us if we consider the samples
of the ADC over time as a list, then in multi-rate systems the positions in the lists
correspondwith di�erent times, which are di�cult tomerge. As we have separated
these notions of time, this is not a problem in our approach.

Consider a multi-rate mixed-signal model with an ADC with rate �.� and an
ADC with rate �.��. A simulation at time �, means that the ADCs should output
the latest samples, which are the samples from time �.� and �.�� respectively. �us
at the ADC we �oor the simulation time to the last sample time and use that to

���

�.�.
S��

�������

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Averaged sine wave over three
samples

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Addition of two DT ramp sig-
nals with di�erent sample rates

evaluate the signal from the CT domain. �is system is de�ned as follows:

(ramp�.� ▷ adc�.� ∥ ramp�.� ▷ adc�.��) ▷ (+) ▷ sink
rampr () = t � r ⋅ t

�e input signals of the ADCs are linearly increasing signals with a slope of �.� and
�.� respectively. �e di�erent slopes of the input signals allow us to di�erentiate
the two ADC signals more easily. �e simulation result is shown in �gure �.��. �e
sample times of the two ADCs are clearly visible in the �gure, including the latest
samples at time �.� and �.��. Furthermore, there is no common clock between
the signals, making such a multi-rate system di�cult to align with a global clock,
especially if there are even more DT signals with a di�erent rate.

Note that simulation steps could be larger than ADC sample time steps, so
DT components with state should be applied with all the samples since the latest
state. �is is implemented by tracking the latest sample time and the local sample
rate in the DT domain combinators. Also, blocks that combine data with di�erent
rates should take care of generating an appropriate rate at the output. �is is only
a designer issue, however, because the framework supports mixed rate signals as
can be seen from the simulation results above.

�.� S���������

Simulation of a model consists of evaluating the model and visualising results.
De�ning the mathematical de�nitions of the model in Haskell provides the advan-
tage that the model can be “executed” for simulation. Additionally it is useful to
show a block diagramor data�ow graph of the systems and the state of components.
We will discuss both evaluation and visualisation.

A major di�erence between our approach and other mixed-signal modelling
tools (see section �.�) is the way the model is simulated. Our approach is based

���

C
��

��
��

�.
U
��
T�

on function composition, while other tools are based on value-passing between
components. Such tools do not allow exact time transformations such as time de-
lays (section �.�). Furthermore, solvers are used for simulation. Simulation is per-
formed with a global time step, set by the solver, and the whole model is evaluated
at this set time. Since our approach uses functions of time instead of values, a
component has local control over the time step, and this time step is automatically
propagated backwards in the model as we will show.

�.�.� Evaluation

As models are a composition of functions, simulation is simply a matter of evaluat-
ing the composed function or model. Since simulation is evaluation over time, the
top level component needs to be a CT component. �e output of the top compo-
nent is a function of time to a vacuous result, of which the time is used as a time
step for updating the visualisations, i.e. the model is updated until that time. In
addition, the top component has a vacuous input.

�e visualisation update or simulation time step can be larger than the time
step used locally for e.g. sampling or an integral approximation. In that case, the
ADC or integral component are evaluated a few times with their local time step
until they have reached the simulation time. �e output signal of a component is
applied to a time. �is component, for example a plot component, then uses its
local time step to evaluate its input signal. �e time thus propagates backwards
through the components. Only when necessary, for example for numerical approx-
imation, are the input signals evaluated with smaller time steps, and only at the
input of the component.

As an example, consider the evaluation of themodel from section �.�.� repeated
here:

source ▷ delay�.�� ▷ adc�.�� ▷ add�.�� ▷ sink

Assume a sine source, i.e. source () = t � sin(t). �e input signal of sink which
is used for visualisation is then:

add�.�� (adc�.�� (delay�.�� (t � sin (t))))
= t � �.�� + sin (�(t − �.��) ��.��� ∗ �.��)

As explained before, the important aspect from this example is that t is unaltered
by add, �oored by adc and shi�ed by delay before sin is applied to it. In case of
an integration component o�en a numerical approximation is used with a step size
much smaller than the simulation step size. For such an integration component we
can locally apply the input signal to a time with the smaller step size until we have
calculated the result for the simulation time. So the component has local control
over the time granularity.

In summary, the overall model determines the step size for simulation, while
the local time steps are used for the plotting resolution, approximation accuracy
or sampling.

���

�.�.
S��

�������

�.�.� Visualisation

Visualisation of signals, components and models is actually a side-e�ect of the
model. Hence, above we have le� it out of the de�nitions. For example, a scope
sink visualises its input signal but does not generate an output signal, i.e. it has
a vacuous result. It is also possible to visualise a block diagram of the system or
display the internal state of components. During simulation, the visualisation is
updated each time the model is evaluated by producing a list of “plot commands”.
Since side-e�ects are not part of a function result in a computational sense, this
can not be done directly in Haskell. Hence, they have to be an explicit output of
the function. In this section we will explain how to deal with side-e�ects in U��T�,
in this case for visualisation but we use the same approach for state in the next
section.

Visualisation updates are implemented as an additional output vs (of type [V])
of a component, which we call views. A view is a list of commands to the graphical
environment, such as “draw a line in �gure � from the last point to (�,�)”. �us, the
type de�nition of the component is:

Component = Sign → (Sigm , [V])

�ere are also commands for plotting a block of a block diagram or a process in
data�ow graphs.

An example of a component is then:

addn(x) = (n + x , [rectangl e(“+” ++ show(n)])

Herein, the component for addition again has n + x as output as in equation (�.�),
but also a command to draw a rectangle with a plus symbol and a character repre-
sentation of n using show(n).

However, now components have two results, of which only the �rst is relevant
to connected components. �erefore, the composition operators are rede�ned to
only provide the �rst output to following components. �e second output consists
of the views, aggregated into a single list. �e resulting de�nitions are:

φ ▷ ψ = f � (h, vs ++ws) ,
where (g , vs) = φ (f) , (h,ws) = ψ (g)

φ ∥ ψ = (f , g)� ((f ′ , g′) , vs ++ws) ,
where (f ′ , vs) = φ (f) , (g′ ,ws) = ψ (g)

� φ = f � (g , vs) ,
where ((g , h) , vs) = φ (f , h)

Each component can have a view. A plot sink is typically used for visualising
signals as in �gures �.� and �.��. Other components can also present a visualisa-
tion, such as an illustration of its functionality, besides performing a signal trans-
formation, although positioning of graphical elements is still amanual process. For
example, �gure �.�� shows a block diagram of mixed CT and DT components (a
beamforming system), and �gure �.�� shows a DF graph.

���

C
��

��
��

�.
U
��
T�

F����� �.��: Beamforming system block diagram

F����� �.��: Data�ow graph

�.�.� Memory and state

�e use of memory or state has been mentioned several times. DF components
have state for remembering the input channel contents. An example of a DT com-
ponent with state is a FIR �lter. A FIR �lter uses a history of recent inputs for
calculating the current output. An example of a CT component with memory is
an integration operation.

Essentially, memory or state is not necessary for correct simulation results. Pre-
vious inputs (in case of DT) or an approximation over time (in case of CT) can sim-
ply be recalculated every time they are needed. However, simulationwould quickly
become very ine�cient because of these redundant calculations. If we restrict t to
be totally ordered, we can re-use previously calculated results. So for reasons of
e�ciency, previously calculated results are remembered.

We will �rst present how state is used and then we will present how the state is
hidden for the �nal component.

�.�.�.� Using state

�e functionality of a component with state is de�ned with a function that has an
extra input and an extra output for the state. �e state for the integral, for example,

���

�.�.
S��

�������

is the last time t� and value y� it calculated (using the integral de�nition from
section �.�.�):

∫h ,(t� ,y�)(f) = t � (y, (t, y))
with

y = y� +
n−�
�
i=� h ⋅ f (ti), where n = (t − t�) �h, ti+� = ti + h

Note that (t, y) at the output is the next state.
When the integral is used as a component, we have to explicitly manage the

state, as can be seen from the following de�nition:

systems(f) = t � ((g , s′), v)
where
((g , s′), v) = (source ▷ inth ,s ▷ adcd ▷ sink′) () (t)

sink′ (f) = t � (((), s′), plot(x)) where (x , s′) = f (t)

where g is the output signal, s′ the updated state and v the aggregated views. Here,
adc does not have to be changed, because of the extra state input from int, as adc
only changes the time the integral is evaluated at; the result of the integral at that
time is just some structure to pass on, with or without state. However, sink does
something with the resulting values, namely plot them. �erefore, sink extracts
the output value x and the state from the integral s′, where x is used for the plot
and s′ is passed on to the output and back to system.

�e di�erence in performance between a simulation with state and without
state is quite substantial, especially formultiple integrations in sequence. For exam-
ple, simulating the systempresented abovewith ��� simulation time steps, andwith
about �� integration steps per simulation time step, takes �.��� s without state and
�.��� s with state on a �GHz Core �Duo system (a ��× speed-up). For two integra-
tion components in sequence, simulations without state almost become unmanage-
able taking ����.��� s (±��minutes) against �.��� s with state (a ����x speedup).

An example with state in the DT domain is a FIR �lter. A FIR �lter calculates
the convolution of the impulse response of a �lter (�h) with the input (�x):

y [t] = ��h ∗ �x� [t] =
N−�
�
n=� hn ⋅ x [t − n]

where N de�nes the �lter order, �h is the set of coe�cients, �x denotes the input data
and y denotes the �lter response. As can be seen it uses N − � previous inputs. �e
FIR �lter implementation thus has the previous N − � inputs as state s:

f ir�h ,�s (x) = (�h �x , �x)
where
�x = tail(�s) ++ [x]

���

C
��

��
��

�.
U
��
T�

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Two sources simulation

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

�.� � �.� �

F����� �.��: Filtered sources simulation

�e function f ir computes the convolution between the coe�cients �h and the in-
puts �x, where �x is determined by dropping the oldest input of the state �s (the head
of the list) using tail , and adding a new input x to the end of the list. �e state �s of
f ir is the reversed list of the previous inputs, and the next state is the updated list
of inputs �x. �e dot product () is denoted as:

�h �x =
N
�
n=� hn ⋅ xn

�e FIR �lter is applied to an input signal consisting of the sum of two sinu-
soidal signals, one of which has a �� times higher frequency, as shown in �gure �.��.
We �lter this signal with a �-taps low-pass FIR �lter with �lter coe�cients �h as fol-
lows:

�h = [�.���, �.���, �.���, �.���, �.���, �.���, �.���, �.���]
�s� = [�, �, �, �, �, �, �, �]

systems(t) = (�s′ , y)
where
(x , �s′) = ((src� ∥ src�) ▷ (+) ▷ adcd ▷ f irh ,s) () (t)

y = sink(x)

where the initial state �s consists of all zeros. As the FIR �lter is in the DT domain,
the output signal of f ir is a value and a new state. Now, we can directly extract the
state �s′ (i.e. the state does not have to pass through the sink), and just apply sink
to the value x.

�e plot of the resulting values a�er evaluation is shown in �gure �.��. As can
be seen, the source with the higher frequency is strongly attenuated.

In this example, the representation using composition operators and corre-
sponding to a block diagram representation is split in two parts to extract the state.

���

�.�.
S��

�������

�e reason is that the state of the FIR �lter must be bound to a name, so the system
function can return it.

Clearly, there is a lot of additional e�ortmanaging the state that is not related to
designing the system. Because the state depends on the time, the CT components
have to manage the state explicitly as presented. For the DT components we can
use special composition operators to pass the state over the component. Yet, the
DT component itself can have state, requiring yet more operators to combine the
state again.

Furthermore, state hierarchically moves up all the way to the top level com-
ponent, as can be seen for system. For the top level component, the state of all
sub-components is combined in a single state. �is state has to be packed in and
out, at each level, and each time a function with state is used. �erefore, state is
globally managed, while it is a local property of a component. What we would like
is to provide an initial state to the component and keep it local, i.e the state should
not be visible when composing components. �is can be achieved by making use
of continuations to hide the state, as discussed next.

�.�.�.� Hiding state

�ere are several options for implementing state hiding. We choose to use con-
tinuations, because it matches well with our representation for components and
composition. A continuation represents a function, or in our case a component,
that is to be used for the next input, i.e. it represents a function to continue the
computation for the next input. Using continuations, the composition operators
can hide all the plumbing, for supporting state, from the user.

To apply this, a component is a function from an input to an output and a new
version of itself with updated state, the continuation:

Component = Sign → (Sigm ,Component) (�.�)

�is is similar to the implementation of views in section �.�.�; U��T� combines
both views and continuations for a component.

As discussed above, the functionality of a component is de�ned using a func-
tion with an explicit input and output for state:

f ∶ S × I → O × S
f (s, i) = (o, s′)

�is function is applied to an initial state s� and an input and returns an output
and a new state s′. �us, the new state is already available before the next input. If
f is partially applied to s′, we get a new function f ′:

(o, s′) = f (s� , i)
f ′(i) = f (s′ , i)

where f ′ is the continuation, i.e. the function to use for the next input.

���

C
��

��
��

�.
U
��
T�

�is principle is recursively applied for each new input using the ⇑ operator,
which is de�ned as:

f ⇑ s = i � (o, f ⇑ s′)
where (o, s′) = f (s, i)

When a component is de�ned the initial state is provided (f ⇑ s�), a�er that, each
input results in an output o and a continuation (f ⇑ s′), with s′ the next state. At
the outside of f ⇑ s� the state is not visible.

Of course, now we have to manage the continuations instead of the state. How-
ever, in contrast to the state, the continuations do compose. �is is performed au-
tomatically by the composition operators. �us, components with state compose
just as components without state using these operators. All that remains are de�ni-
tions for the composition operators which are similar to the de�nitions provided
for composing views:

φ ▷ ψ = f � (h, φ′ ▷ ψ′) ,
where (g , φ′) = φ (f) , (h, ψ′) = ψ (g)

φ ∥ ψ = (f , g)� ((f ′ , g′) , φ′ ∥ ψ′) ,
where (f ′ , φ′) = φ (f) , (g′ ,ψ′) = ψ (g)

� φ = f � (g , � φ′) ,
where ((g , h) , φ′) = φ (f , h)

Herein, component φ is applied to input f , resulting in an output g and a con-
tinuation φ′. For ψ, it is applied to g resulting in h and a continuation ψ′. �e
result is a component with input f resulting in output h and a continuation: the
sequential composition of the continuations of the sub-components.

�e ⇑ combinator was already presented for the DF domain in section �.�.�. It
can also be used directly for the de�nition of the FIR �lter above, i.e.:

f irDT = f irh ⇑ �s�

In both the DT and DF domain, a new input value or new input tokens change the
state of the components. Multiple components with state can be composed using
the composition operators. Components without state need to be represented in
the same form as equation (�.�) in order to compose with component with state.
�is is easily achieved using:

↑ (f) = i � (f (i), ↑ (f))

where the continuation is just the same function f again.
By embedding a DF component into a DT component, components with state

from both domains can also be composed. �is is achieved using <~> from sec-
tion �.�.�, straightforwardly adapted for phi, and also returning a continuation:

<~> p s i = \ x −> l e t ([y] , p s i ’) = p s i [x] in (y , p s i ’)

���

�.�.
S��

�������

State in the CT domain is more di�cult. State represents a result that is re-
membered over time. For the DT and DF domain, the next input represents a step
in time, and the state changes because of the new inputs. In the CT domain, the
inputs represent functions of time. Hence, a new input to a component does not
represent a step in time in the CT domain. In fact, in the CT domain functions are
composed only once, resulting in a function of time which is then evaluated over
time.

However, for an integral as in the example above, we compute the input signal
from t� to t in steps of h. E�ciency would be very much improved if the last
computed result from the integration can be re-used. �is is achieved by using a
signal with state in the CT domain.

SigCT = Time � (R, SigCT)

where the second output is a continuation containing the updated state for the
components. �e integral is then de�ned as:

∫h ,(t� ,y�)(f) = t � (y, ∫h ,(t ,y)(f ′))
where the second output is now the ∫ function again, but with updated state, and
with an updated input signal f ′. �ese are now computed as:

sum f (t� , t� . . . tn) = (h ⋅ x) + sum f ′ (t� . . . tn) where (x , f ′) = f (t�)
(y, f ′) = y� + sum f (t� , t� . . . tn)

where n = (t − t�) �h, ti+� = ti + h
Herein, sum is computed recursively, and each step f (t) is extracted into value x
and continuation f ′, where x is added to the computation and f ′ is used for the
next step. �e �nal result is the value of integration up to t and the continuation
f ′ updated up to t.

Each CT component now needs to be adapted to a signal that provides a value
when applied to a time and a new signal to use next time. �erefore, the li�ing
operator is changed:

ĝ (f) = t � (g (x), ĝ(f ′)) where (x , f ′) = f (t)

Unfortunately, such a signal representation does not compose when using feed-
back composition in the CT domain. We will discuss this problem next.

�.�.�.� Feedback with state in the CT domain

For a feedback loop in the CT domain, the feedback signal typically steps back in
time to some start condition, i.e. an integral from t�. If it does not step back in time
somewhere in the loop there is an in�nite recursion or algebraic loop that will not
terminate. However, this recursion back in time causes all results from t� to t to

���

C
��

��
��

�.
U
��
T�

be recalculated each time we evaluate the output signal. In the DT and DF domain
the feedback loop also steps back in time, however, now the state can be used to
update the start condition to the last computed value.

�ough modelling the environment of beamforming applications does not in-
clude feedback, from a perspective of generalising UniTi, it would be bene�cial to
be able to support feedback in theCTdomain. Our experiments so far did not yield
a solution. It is not possible to add the state to a CT component, as this component
is applied to the input signal only once, to compute the �nal output signal. �ere-
fore, we have added state to the CT signal, as presented above. Each evaluation,
the signals update their state with the latest value of the signal, such that it does
not have to be recalculated when used in a feedback loop. Unfortunately, such a
signal can not be used for a feedback composition. When such a signal is used for
a feedback loop, the signal h used at the feedback input should be updated with the
latest value at the feedback output h′ of the component. However, at that point we
do not have access to the continuation of h anymore, as h was needed to compute
h′. �erefore h still contains the old value and will recursively do so back to the
start condition again. As such, it remains an open problem.

In Haskell there are several options to explore for possible solutions. For exam-
ple, a sort of hash table can be used to store already computed values, calledmem-
oisation [��]. However, it then must be decided when such values can be thrown
away. Exploring these directions to solve the problemwith feedback is le� as future
work.

We do note that this is a matter of e�ciency and not correctness, although it is
a serious e�ciency issue. Furthermore, it is possible to use a DT or DF feedback
loop to replace the CT one as a workaround.

�.� M���� ���������������

In chapter � we have presented a design �ow for dividing functionality over the
domains and within a domain. U��T� allows for a single model during the design
process. Because of the integrated approach presented, we can apply model-based
design using transformation steps. Furthermore, the transformations preserve cor-
rectness of the design. Nevertheless there is very limited support for model trans-
formations in existing tools (see section �.�). We will discuss model transforma-
tions for the co-design and partitioning steps.

�.�.� Co-design

U��T� supports a number of features to assist the co-design step of he design �ow.
�e basic algebraic mathematical operators such as + and ⋅ are overloaded so the
same operator can be used for all domains using the type class feature of Haskell.
�at means that the type of the signal determines the speci�c operator implemen-
tation that is used and that the semantics of the operator in each domain are the
same. �erefore, a mixed CT and DT model is transformed from a CT model by
only adding an ADC.

���

�.�.
M
����

���������
������

For example, a domain independent de�nition of an addition of � (bias) fol-
lowed by a multiplication with �.�� (gain) is:

(+�) ▷ (∗�.��)

where the input signal determines whether functions of time, values, or tokens
are added and multiplied. However, without changing the de�nitions and by only
adding an ADC, the addition is in the CT domain while themultiplication is in the
DT domain:

(+�) ▷ adc�.� ▷ (∗�.��)

Of course, the placement of the ADC and in general the division over the do-
mains is amanual operation by the designer, as the relevant properties for assessing
the trade-o�, such as cost in terms of money or energy, are not part of the model.
�at is not to say they could not be; further research into this direction would be
interesting.

�.�.� Partitioning

During the partitioning step in U��T�, an application is parallelised using model
transformations. However, parallelising an application is not straightforward, as
the dependencies between computations must be derived. Here, we present guide-
lines on specifying applications so they can be parallelised more easily. �is in-
volves identifying parallelism (in an application), and de�ning an application such
that the parallelism can be exploited by model transformations in U��T�. Speci-
fying applications as such is performed by using the mathematical (model) de�-
nitions supported by U��T�. �en we will present how such applications can be
partitioned, with an example of a distribution model transformation.

We identify two kinds of parallelism: data parallelism and control parallelism.
In the �rst kind of parallelism the data is split. Examples are bit-level and data-level
parallelism. In the second kind the control, i.e. the operations on the data, is split.
Examples are instruction, task and pipeline parallelism.

�.�.�.� Control parallelism

Control parallelism occurs when some operations or functions are executed in se-
quence. A section can already continue with the next data, while later sections are
still operating in parallel on previous data. To keep execution functionally correct,
the sections may not in�uence each other besides the explicit input and outputs,
i.e. the function must be side-e�ect-free with respect to the calculation.

�ese restrictions are captured by the DF model. Passing arguments to math-
ematical functions is similar to communicating values between processes. In the
DF domain, data in channels must remain ordered, making sure the operations
are performed in sequence. Back-pressure (a process is stalled if the tokens are not
consumed from the output bu�er fast enough by the next process, see section �.�.�)

���

C
��

��
��

�.
U
��
T�

ensures automatic synchronisation in parallel execution. �us, the computation
(functionality) and communication (the inputs and the outputs) are made explicit
to �t to the data�ow model and are wrapped in a DF component.

�.�.�.� Data parallelism

Data parallelismoccurswhen some operation or function has to be executed on the
data in aggregate data structures such as lists, arrays or trees. �ere are at least two
elementary forms of such operations, the �rst applies an operation to each element
of an aggregate data structure separately, the second gathers the elements together
into a single outcome (as in “map-reduce”). �e dot product below explains this
in further detail.

�.�.�.� Aggregate operations

In order to recognise and isolate data and control parallel properties of operations
in an application, it is bene�cial to formulate the application on a level that is as
high as possible. �at is to say, to specify operations on the aggregate level rather
than on the element level.

As an example, consider the standard de�nition of the dot product of two vec-
tors (such as used for a FIR �lter or beamformer):

�a �b =
N
�
i=� ai ⋅ bi (�.��)

In this de�nition the operations for addition and multiplication occur on the ele-
ment level, where the individual elements are indicated by the index i. �is formu-
lation strongly suggests a for-loop in which for each pair of elements both opera-
tions are performed, aggregating the results step by step into a �nal sum. However,
in general it is di�cult to parallelise such an implementation, since the operations
are entangled with each other at every step of the for-loop, leading to algorithmic
structures which are hard to disentangle, especially when side-e�ects arise. �is
problematic character is con�rmed by the extensive research to automatically par-
allelise for-loops in existing code [��, ��].

We will choose a di�erent approach by looking at such algorithms from amore
abstract perspective: instead of de�ning the dot-product by using indices and by
intertwining the operations + and ⋅ together into one computational activity, we
will “li�” the operations to the aggregate level, in this case to the vector level. From
equation (�.��), it can be seen that we need:

• pairwise multiplication of the elements of the vectors. We use the notation ⋅̂
for this li�ed version of multiplication. Note that this usage of the operator
̂ is in accordance with earlier usage, since a vector can be seen as a function
from indexes to values.

• the reduction of the resulting values to a single value by using +. We use�+
to denote this interpretation of addition, i.e. the expression �+ �x means that
the elements of vector �x are summed.

���

�.�.
M
����

���������
������

We remark that this can be generalised to other operations thanmultiplication and
addition as well.

Clearly, the dot product of two vectors �a and �b can now be de�ned as follows:

�a �b = �+ ��a ⋅̂ �b� (�.��)

Note that our notation does not involve reference to the individual elements in the
vectors, so no indices are needed. What is further important to observe is that the
operations ⋅̂ and�+ are now visible on aggregate level. In the algorithm for the dot
product these operations are separated.

Now, it is possible to use such de�nitions at the aggregate level for partitioning,
so that we can formalise it as a model transformation. �e ⋅̂ operates on the data
independently, so it is easy to parallelise. However the reduction operation�+ must
be associative to be able to use parallelism. For example, splitting vector �a and �b in
three sub-vectors �a� , �a� , �a�, respectively �b� , �b� , �b� (where �a and �b are equally long)
leads to the following parallelisation of the dot product:

ei =�+ ��ai .̂ �bi� , where i = �, �, �

�a �b =�+ [e� , e� , e�] (�.��)

Note that the indices here indicate that we have chosen to partition the dot product
in three parts, i.e. they are part of the partitioning, not of the application de�nition.
Further, the calculation of ei and can be pipelined and has a tree-like computa-
tional structure.

�us, data parallelism is provided by de�ning the operation on aggregate data
and control parallelism is provided by separating the + and ⋅ operations and by
staging the reduction operation in a tree. �is last approach is an example of a
divide-and-conquer strategy [���]. Next, we will present themodel transformation
to perform this partitioning automatically.

�.�.�.� Transformation

In the previous section it has become clear that how the functionality is speci�ed
in�uences how much parallelism can be exploited. It is ongoing research how to
transform such structures to the aggregate level automatically, and for now this
is a manual process. However, when the algorithm is speci�ed on the aggregate
level, we can automatically partition it to execute data-parallel or with a divide-
and-conquer strategy. �is is done with a higher-order function, that takes the
aggregate operation and generates a number of connected data�ow processes, i.e.
the step from equation (�.��) to equation (�.��) is automated (assuming the reduc-
tion operation is associative). �e granularity (the vector is split in three in our
example above) is a manually speci�ed parameter. �e amount of computation
and communication per process must be matched with the capabilities of the pro-
cessors and the network.

���

C
��

��
��

�.
U
��
T�

Distribution As an example we de�ne the higher-order transformation for the
implementation of the dot-product of equation (�.��):

�h �x =�+ (�h ⋅̂ �x)

To distribute the dot-product the inputs are split every n values. �e function
spl it cuts a vector �x in a sequence of sub-vectors of length n:

spl itn �x = ��x� , �x� , . . .�

It can be de�ned recursively as follows:

spl itn [] = []

spl itn �x = �a ∶ spl itn �b

where

(�a, �b) = spl itAtn �x

Herein, spl itAtn splits the vector �x into a vector of the �rst n elements (�a) and a
vector of the remaining elements (�b).

Furthermore, we normalise the coe�cients �h (h is the �rst element of �h, and
�h′ the remaining part):

normal ise �h = � ∶�(�h) �h′
which is only allowed if the function we distribute, the dot-product in our case, is
distributive over addition.

Finally we de�ne a generic distribution transformation for any reduction func-
tion f that takes two arguments (�h and �x) and is distributive. For a singleton vector
�x� we have

distributen f �h �x� = x

whereas for arbitrary vectors �x we have

distributen f �h �x = distributen f �h′ �y
where

x = spl itn �x

h = spl itn �h
�h′ =�head h

h′ = �normal ise h

�y = h′ f̂ x

where the inputs are split every n values, the coe�cients are normalised and the
results are recursively distributed again. Only the granularity n and the reduction
function f need to be speci�ed. Note that we write the application of f to corre-
sponding elements from h′ and x in in�x notation.

���

�.�.
C
���������

�.�.� Design space exploration

We have touched upon a number of trade-o�s that the designer must specify:
• analogue/digital co-design

• hardware/so�ware co-design

• the way the functionality is speci�ed

• the granularity of the partitioning
As these are trade-o�s, it is very helpful for a designer to try a few di�erent alterna-
tives, so-called design space exploration. With the help of U��T�, inmany cases it is
simply a matter of moving the ADC or applying a di�erent parallelisation strategy.

By using aggregate operations the model is independent from the number of
data elements. However, the number of data elements does in�uence the number
of processes or the amount of computation and communication per process. As
the partitioning is automated we can quickly explore the results with a di�erent
number of elements and with di�erent granularities, without any changes to the
model besides the granularity.

�.� C���������

In this chapter we have presented the formalisation of U��T�. U��T� provides a
framework for multi-domain modelling and simulation, and as such uni�es time,
signals and components in the CT, DT and DF domains.

In each domain components are signal transformations, but the signals them-
selves are di�erent. In the CT domain, signals are functions of time; a transformed
signal is thus also a function of time. Moreover, the time reference can be changed,
enabling the framework to include time transformations in the formalism, and
allowing exact simulations of models including such transformations. In the DT
domain signals are values; values can change over time, but that is outside of the
in�uence of the DT component. In the DF domain signals are lists of tokens repre-
senting channel updates.�erefore, DF signals represent the change of tokens over
time tomatchwith the standard interpretation of signals in the CT andDTdomain
and allowing the integration of the DF domain. �is is signi�cantly di�erent from
the standard representation of data�ow models, where channels contain tokens
and provide the connection between processes. In U��T�, the current contents of
the input channels are part of the DF component, together with an implementa-
tion of the �ring rules and channel management. �ese tasks are provided by the
U��T� framework.

As components in all domains are signal transformations, we can use uni�ed
sequential, parallel and feedback composition. Sequential composition uses the
output of the �rst component as input of the next. Parallel composition provides
the �rst signal to the �rst component and the second signal to the second com-
ponent. Feedback composition feeds back the second output signal to the second
input of the same component, resulting in a component with a single input and a

���

C
��

��
��

�.
U
��
T�

single output thereby hiding the feedback signal. Feedback is also used to support
components with state.

In U��T� the notions of time are separated. �e time used locally at a compo-
nent can be di�erent from the simulation time used for the �nal composed model.
�e sample time also does not have to match with the simulation time, as the sim-
ulation time is changed to the latest sample time, locally at the ADC component.
Components that deal with change over time, such as integration or di�erentiation,
in the general case need a solver. In all tools, this solver is global and uses a global
approximation time step. In U��T� the used solver is locally applied for the compo-
nent, enabling the designer to choose a speci�c solver, as well as the approximation
time step used, at each component.

For integration, a DT component is embedded into a CT component. �is is
achieved by letting the time at which a CT output signal is evaluated determine the
value of a CT input signal to which theDT component is applied. Furthermore, the
embedding of a DT component is automated if a CT and DT component are com-
bined. To integrate a DF component, it is embedded in a DT component by using
the values of a DT signal as token updates, and by using a single token as output
value. However, their integration limits the tokens at the boundaries of a data�ow
model to have a value representation. �e sample time of a DT signal determines
the token arrival time at input of the data�ow model, thereby providing a time
reference for the execution time and thus token production time of data�ow pro-
cesses. �e embedding of DF components is also automated. �e �nal composed
and integrated component is a CT component, thereby integrating the time in the
model. �is is deliberate, so we can use this component to evaluate the model over
time for simulation.

Feedback in the model will trigger a computation that recurses back in time to
a terminating condition during simulation. �is is not e�cient as results are recal-
culated for each simulation time step. �erefore, state is introduced to remember
previously calculated results, forcing the time in themodel to be causal and ordered.
Keeping state is implemented by using continuations, i.e a component provides an
output and an updated version of itself. Furthermore, components can provide a
visualisation, either a plot or a �gure of the current state of the component. �ese
continuations and visualisations are combined, up to the �nal component repre-
senting the model, during composition.

Model transformations are used for division over domains during the co-design
step and division within a domain during the partitioning step. �e automated in-
tegration ofmulti-domain components facilitates domain independent de�nitions,
thereby allowing their domain to be determined by the context and allowing fast
and easy changes to the model. Within a domain, aggregate operations, such as
element-wise or reduction operations, allow model transformations by exploiting
the mathematical properties of a de�nition.

Overall, U��T� provides a framework for modelling CT, DT and DF compo-
nents in a single model. In combination with mathematical de�nitions of model
components, this allows a model-based design �ow including support for model

���

�.�.
C
���������

transformations. Furthermore, di�erent notions of time are represented in the
model and integrated with U��T�, enabling exact simulation of time transforma-
tions and modelling execution time of data�ow processes.

C������ 6
Case study

A������� – In this chapter we will consolidate the work presented in the previous
chapters with a case study on the design of a generic beamforming platform using
a tiled recon�gurable architecture. �e design �ow and framework of U��T� is
applied during the design process. First, a speci�cation of the beamforming appli-
cation is provided, which is executable for simulation and veri�cation. Next, this
speci�cation is subdivided into sub-components representing the environment, the
architecture and the application during the analogue/digital and hardware/so�ware
co-design step. As a result, components are modelled in the CT, DT and DF domain.
�ese models are compared to Simulink and found to be more computationally
e�cient whilst also supporting exact time delays as experienced by the antenna
signals. �erea�er, the partitioning step subdivides the beamformer onto a tiled
architecture. During the design process the model becomes more speci�c. For the
mapping and implementation step we will use the adaptive beamformer on a small
architecture consisting of three recon�gurable processors. �e case study is con-
cluded with a discussion on the applicability and �exibility of U��T� for the design
of a beamforming platform. U��T� is found to be very capable, yet the mapping
and implementation steps are still completely manual and could greatly bene�t if
supported by U��T�.

In this chapter the design �ow and framework of U��T� is applied to a non-trivial
case study. An embedded system is designed for the phased array beamforming
application from chapter � based on a tiled recon�gurable architecture as presented
in chapter �. �is is achieved using a single model which is re�ned into a more
detailed model by the design steps presented in chapter � and supported by the
formalisms for modelling domains and model transformations from chapter �.

Parts of this chapter have been published in [KCR:�], [KCR:�], [KCR:�], [KCR:��], [KCR:��]
and [KCR:��].

���

C
��

��
��

�.
C
��
�
��
��

�

�e phased array system consists of a processing part performing the beam-
forming operation and beamcontrol and a front-end for each antenna signal.�e
case study also includes amodel of the environment to generate the signals received
at the antennas of the phased array system, allowing us to execute the model and
verify the correct operation of the beamforming and beamcontrol processing. In
chapter � we have developed digital signal processing (DSP) algorithms to adap-
tively steer the main beam in order to track a moving source. �erefore the model
of the environment generates source signals with a moving position so as to accu-
rately simulate the antenna signals that the real system would receive. However,
this means the signals generated from the environment must model the relevant
properties of the environment exactly, otherwise we can not di�erentiate whether
errors are caused by the model of the environment or caused by the adaptive beam-
control algorithm. Aswe found in chapter �, Simulink and other tools do introduce
interpolation inaccuracies whenmodelling time delays such as experienced by the
signals from a source to each of the antennas of a phased array receiver. �is is
especially relevant because for each antenna of the array, the delay of a signal is
di�erent, so a large array has many time delay components (which will even vary
over time), causing a major problem in Simulink. It is possible to approximate the
delay with a phase shi� as a workaround, but that still introduces inaccuracies and
is therefore only valid for narrowband signals, excluding wideband beamforming
applications. U��T�, as we will see, is able to model the environment for a phased
array system exactly.

We will develop the case study in three parts with increasing complexity:
• a simple beamformer with the path length between the transmitter of the
source and each receiver of a planar arraymodelled by time delays and beam-
steering based on a phase shi� correction with a �xed steering angle, i.e.
without a beamcontrol algorithm,

• an adaptive beamformer using aULA and E-CMA for adaptive beamcontrol,
thereby introducing QPSK modulated signals and feedback loops in the sys-
tem,

• and a hierarchical beamformer with A-CMA as adaptive beamcontrol algo-
rithm.

�ese are presented as such to gradually develop the model, each time focusing
on a speci�c part of design; the model of the environment, the adaptive control
algorithm and hierarchical beamforming respectively. During the design steps the
model is re�ned and therefore becomes more speci�c; for the later stages of the
design process we will use the E-CMA-based adaptive beamformer on the LEON
S�C platform, a small tiled recon�gurable architecture consisting of three M��-
���� recon�gurable processors and a NoC (see section �.�.�).

In section �.� we will present a formal speci�cation of the basic functional
behaviour of the system. During the analogue/digital and hardware/so�ware co-
design step in section �.� the case is re�ned into a signal �owmodel and compared
with a Simulink equivalent (in three parts). �e processing is to be performed on
multiple recon�gurable processors. �e beamcontrol is expected to run on a sin-

���

�.�.
S������������

gle processor, but the beamforming processing must be partitioned as presented
in section �.�. Next, we map the adaptive beamformer on a tiled recon�gurable ar-
chitecture in section �.�, and the implementation is presented in section �.�. �e
U��T�model provides the input signals for the implementation, enabling veri�ca-
tion without requiring actual transmitters, receivers and antenna front-ends. Fi-
nally, the results are presented in section �.�.

�.� S������������

Wewould like to design a beamforming system supported by a realistic simulation
of the system and the environment. �e �nal system should be suitable for multi-
ple beamforming applications and therefore a tiled recon�gurable architecture is
proposed for scalability and �exibility. In this section a formal speci�cation of the
functional behaviour is presented.

Simple beamformer A basic beamforming system is based on the Friis equation
(section �.�) and consists of the correction of the time delays caused by the path
length di�erences between sources and receiving antenna elements. Below we give
a mathematical speci�cation for a beamforming system, assuming a single source,
and an array of antennas.

Let s be the signal coming from this source, i.e. s is a function of time. Suppose
that the position of antenna ai is indicated by pi , and that the DoA of signal s is
indicated by d. Note that both pi and d are vectors (with their origin at the centre
of the array), though pi is a vector �xi , yi , zi� of cartesian co-ordinates whereas d
is a vector �r, α, γ� for range, azimuth and elevation.

Clearly the delay δ i depends on the position pi of antenna ai and on the direc-
tion of arrival, and can be calculated as follows (c is the speed of light):

δ i =
� (pi , d)

c

where � (pi , d) is the length function which expresses the distance between an-
tenna ai and source s, de�ned as follows:

� ((xi , yi , zi) , (r, α, γ)) =
�

(xd − xi)
�
+ (yd − yi)

�
+ (zd − zi)

�

with

xd = r ⋅ sin (α) ⋅ cos (γ)
yd = r ⋅ cos (α) ⋅ cos (γ)
zd = r ⋅ sin (γ)

Note that δ i is a scalar value. However, as described in section �.�.�we consider the
delay of a signal s with a value δ as a signal transformation, i.e, as a function with

���

C
��

��
��

�.
C
��
�
��
��

�

signal s as argument and a changed signal as result. Remember that this delayed
signal is de�ned as

delayδ (s) = t � s (t − δ)

�us, the sequence of values of the delayed signals at time t for the array of antennas
�a� , a� , . . .� is (s is the original signal):

σ(t) = �delayδ�(s)(t), delayδ�(s)(t), . . .�

�e phase correctionwi for antenna ai and steering direction �α� , γ�� is calculated
as (λ is the wave length of the carrier):

wi = e j⋅ �πλ ⋅∆ l i
where ∆li is the di�erence in length between the origin and antenna ai , projected
in the steering direction, calculated as follows (is the dotproduct of two vectors):

∆li = �xi , yi , zi� ��, α� , γ��

Let �w be the steering vector �w� ,w� , . . .� and let �w∗ be its complex conjugate. �en
the beamformer b f applies a phase shi� correction and is de�ned as the function
(N is the number of antennas):

b f�w ,σ = t �
�w∗ σ(t)

N

�e abovemathematical speci�cation can be expressed directly asHaskell code
as shown in chapter �. �is code is shown in listing �.�. Most of the code is
straightforward from the de�nitions. We only remark that xs!i select the ith
element from list xs, ** implements the dot product as de�nes in section �.� us-
ing zipWith (*) for the element-wise multiplication and sum for the reduction
with addition. Furthermore, spher2cart implements a coordinate transforma-
tion, and although angles are represented as degrees for clarity the trigonometric
functions expect radians. Finally, complex numbers are used, where :+ is an in-
�x operator expecting the real and imaginary part, and cis construct a complex
number with magnitude � and its argument as angle. For simulation, a number of
constants are de�ned that are used in the de�nitions, e.g. ps represents the antenna
positions. Simulation is performed by evaluating the model for a list of simulation
time steps ts using map, which applies the model to each time step one by one.
Note that most de�nitions are globally de�ned and used in other de�nitions.

By executing this code we have veri�ed that the output signal of the beam-
former corresponds exactly to the signal of the source when steered in the correct
direction. Figure �.� shows the resulting signal when mispointing, i.e. a ��MHz
sine source with amplitude � and initial phase �° arriving from ��° azimuth (shown
in light grey) while the �-element ULA beamformer is steered to −�° azimuth. As
expected the sine wave is attenuated because of mispointing and the initial phase
has shi�ed because the distance to the centre of the array (���.�λ) is not a multiple
of the carrier period (see section �.�.�).

���

�.�.
S������������

� −−−
� −− model
� −−−
�
� x s ! i = x s ! ! (i − �)
�
� hs * * x s = sum (zipWith (*) hs x s)
�
� d e l t a i = (e l l p d) / c
�� where
�� p = ps ! i
��
�� s p h e r � c a r t (r , a , e) = (x , y , z)
�� where
�� x = r * s i n (a) * cos (e)
�� y = r * cos (a) * cos (e)
�� z = r * s i n (e)
��
�� e l l (x , y , z) (r , a , e) = s q r t ((xd−x) ^� + (yd−y) ^� + (zd−z) ^�)
�� where
�� (xd , yd , zd) = s p h e r � c a r t (r , a , e)
��
�� s igma t = [(d e l a y (d e l t a i d) s t) | i <− [� . . n]]
�� where
�� d = doa t
��
�� w i = c i s (� * pi / lambda * (d l i))
��
�� ws = map w [� . . n]
��
�� d l i = [x , y , z] * * [xd , yd , zd]
�� where
�� (x , y , z) = ps ! i
�� (a , e) = b
�� (xd , yd , zd) = s p h e r � c a r t (� , a , e)
��
�� b f ws s igma = \ t −> ((map con juga t e ws) * * (s igma t)) / (n : + �)
��
�� model = b f ws s igma
��
�� −−−
�� −− s imu l a t i o n
�� −−−
��
�� c = ��� * ��^�
�� f _ c = �� * ��^�
�� lambda = c / f _ c
�� d = lambda / �
��
�� ps = [(x−(n− �) / �) *d , � , �) | x <− [� . . (n− �)]]
��
�� b = (−� , ��)
��
�� d = (� ��� , � � , ��)
��
�� s = \ t −> c i s (� * pi * f _ c * t)
��
�� s t e p s i z e = � / (�� * f _ c)
�� t s = [� , s t e p s i z e . . � � � e−�]
�� sim model = map model t s

L������ �.�: Simple beamformer speci�cation

���

C
��

��
��

�.
C
��
�
��
��

�

am
pl
itu

de

-�

-�.�

�

�.�

�

time (ns)

�� �� �� ��

F����� �.�: Beamformer input (in grey) and
output for N = �, � =��° and �� =−�°

am
pl
itu

de

-�

-�.�

�

�.�

�

time (ns)

�� ��� ��� ���

F����� �.�: Correction by E-CMA for initial
mispointing

C

A

i o

f

F����� �.�: Adaptive algorithm

Adaptive beamcontrol In the above speci�cation, theDoA d and steering vector
�w are�xed over time. For the caseswith adaptive beamcontrol, theDoA is dynamic
and depends on time. �us, DoA d becomes a function of time t. Furthermore,
the steering vector or steering angle is determined by the beamcontrol algorithm.

In order to de�ne adaptive beamcontrol, we �rst give a general formulation of
an adaptive algorithm (see �gure �.�). An adaptive algorithm consists of a compo-
nent C which transforms an input signal i into an output signal o, given some steer-
ing or correction factor f . �e correction factor f is then updated by the adaptive
control component A based on the input i, the output o, and the (previous) factor
f . Such an algorithm is speci�ed by the following equations:

o = C (f , i)
f = Af (i , o)

Note that in these equations all variables are functions over time, and that the re-
sults of C and Af are also functions over time. In practice only a �nite number
of correction factors are calculated, i.e. the function f then becomes a sequence of
values � f� , f� , . . .�, with f� a given initial value. �e equations then transform into:

o (t) = C (ft , i) (t)
ft+� = Aft (i , o) (t)

Note that in these equations i and o are still functions over time.

���

�.�.
S������������

To apply the above to adaptive beamforming, let σ be a vector of input signals
for the beamforming component b f , y the output of b f , and �w the steering vector
(corresponding to the correction factor above). As above, σ and y are functions
over time, whereas �w is a steering vector at a speci�c moment in time. In our case
the output y thus is de�ned as:

y = b f(�w ,σ)
�e E-CMA algorithm (see section �.�.�) is de�ned as follows:

ecma�w (σ , y) = t � �w −̂ µ ⋅ ε ⋅̃ σ(t)
where

ε =
� ⋅ ��y(t)�� − �y(t)��� + j ⋅ (-M ⋅ sin (M ⋅ ∠y(t)))

� ⋅ y(t)

Note that M = � for QPSK modulated signals. Strictly speaking, the notations −̂
(for element-wise vector subtraction, see section �.�) and ⋅̃ (for scalar-vector multi-
plication) are not necessary in amathematical speci�cation. However, anticipating
the implementation we choose to make the parallelism in these operations explicit.

Now the updated steering vector �w′ at time t is

�w′ = ecma�w (σ , y) (t)
To simulate this, we have to calculate the results over a sequenceTof timemoments,
with initial steering vector �w�. �at is, we have to calculate

resul ts�w�(T)

with resul ts recursively de�ned as

resul ts�w (T) = y(t) ∶ resul ts �w′ (T′)
where

y = BF�w ,σ

�w′ = ecma�w (σ , y) (t)
and t is the �rst element of the sequence T and T′ the remaining elements of T,
and with “∶” the list constructor operator.

Note that time is discretised here for the simulation time only, and not for the
time delay as discussed in chapter �, meaning that the calculation of the various
time delayed signals in the beamformer is exact. In addition, the time step for
simulation determines the update step for the adaptive beamcontrol algorithm, i.e.
the time step for simulation is the same as the time step for updating the steering
vector. We will uncouple these two time steps in the next section.

���

C
��

��
��

�.
C
��
�
��
��

�

-�� -�� -�� -�� � �� �� �� ��
�
��
��
���
���
���

-��

-��

-��

�

angle (°)

time (µs)

ga
in

(d
B)

F����� �.�: E-CMA radiation pattern for
linear increasing DoA from −��° to ��°

-�� -�� -�� -�� � �� �� �� ��
�
��
��
���
���
���

-��

-��

-��

�

angle (°)

time (µs)

ga
in

(d
B)

F����� �.�: A-CMA radiation pattern for
linear increasing DoA from −��° to ��°

As before, the above speci�cation is immediately translated into Haskell and
evaluated for simulation. �e adaptive beamformer is simulated in a scenario in
which the azimuth α increases over time by � × ��� t, and initially starts at −��°.
�e range r is �xed to ���� and the elevation γ to ��°. �us the DoA d(t) is:

d(t) = (����, (-�� + � × ��� t)○ , ��○)
Figure �.� shows the beamformer output for a simulation from �µs to �.�µs

with an �-elementULAand a sinewave source.�eDoAof the source is−��°while
the array is initially steered to �°, causing a distorted signal which is quickly cor-
rected by E-CMA. Figure �.� shows the resulting radiation pattern of the E-CMA
algorithm over time for a simulation from �µs to ���µs. In this time frame the
DoA increases from −��° to about ��°. As there are no interferers E-CMA causes
the beamwidth to widen as the angle increases. �e E-CMA also increases the gain
to compensate for the modulus decrease because of mispointing besides changing
the phase. Note that the input signal is a unmodulated (analytic representation of
a) sine wave resulting in a single modulation point.

Hierarchical beamcontrol For hierarchical beamcontrol the A-CMA algorithm
is used, de�ned as follows (see section �.�.�):

acmaθ (σ , y) = t � θ − µ ⋅ ε
where

ε = ��y(t)�� − �� ⋅ (σ(t)H B′ σ(t))
B′c ,r = (c − r) ⋅ �′θ ⋅ e(c−r)⋅�θ for all c, r ∈ {��N}
�θ = j ⋅ �πd ⋅ sin θ
�′θ = j ⋅ �πd ⋅ cos θ

Here, B′ is multiplied on the le� with the hermitian of the vector σ(t), and on the
right with the vector σ(t) itself, using a matrix multiplication.

���

�.�.
C
�-������

A-CMA calculates a steering angle θ, while the beamformer expects a steering
vector. �e steering vector �w can be calculated from θ using a LPT:

�wi = e j⋅π sin θ ⋅i forall i ∈ {�, . . . ,N}

with an antenna spacing of λ��.
Figure �.� shows the radiation pattern over time for the same scenario as above.

�e result looks much cleaner because there is no gain variation and the radiation
pattern is �xed over the angle, since no gain taper is applied by A-CMA.

�.� C�-������

During the co-design step, functionality of the initial speci�cation is divided into
sub-components representing the environment, the architecture (hardware) and
the application (so�ware). �is is achieved by encapsulating functionality in com-
ponents and connecting them using the sequential, parallel and feedback compo-
sition operators de�ned in chapter �. Furthermore, domains are introduced, i.e.
components are in the CT, DT or DF domain. In order to keep the complexity
manageable, this is performed in three steps; �rst basic beamforming, then beam-
control, followed by hierarchical beamforming. During each step a corresponding
Simulink model is used for comparison and benchmarking. For this design step
we will assume a single core architecture with a dedicated front-end per antenna.

�.�.� Simple beamformer

�e division of functionality over components is based on the system design pre-
sented in section �.�.�. To validate the phased array receiver, the signals received
at the antennas are generated, thereby modelling the environment. �erefore, a
source, a transmitter and a channel are added. �e model of the channel imple-
ments the delay from the source to the di�erent receiver antennas.

�e RF front-end is implemented in analogue hardware as the frequencies are
too high to allow the use of only digital hardware. A�er down-conversion, the
signals are digitised and �ltered by the AP block in �xed digital hardware. �us,
between the RF frond-end and the AP for each antenna, an ADC is added. Beam-
forming is performed on the processor, represented as a DF process.

�.�.�.� Simulink model

�e Simulink model of the simple beamformer is shown in �gure �.�. �e channel
implements a variable time delay for each transmitter (Tx) and receiver (Rx) pair.
For each transmitter the source signal is multiplied with a directional dependent
gain in the direction of each receiver. For simplicity, the directional gain is � in all
directions, i.e. omni-directional antennas are used. Amulti-dimensional matrix of
signals is used between the blocks; one dimension for the sources (each has a single
transmitter), a second dimension is used for the signal to each receiver (besides

���

C
��

��
��

�.
C
��
�
��
��

�

F����� �.�: Simulink simple beamformer model

a dimension for time). At the receiver side the signals from all transmitters to
that receiver are summed, thereby reducing the dimension of the matrix of signals.
�e RF and AP blocks only pass-through the signal because we use a baseband
equivalent model, i.e. up and down conversion are replaced by a complex valued
signal representation. �e ADCs use a ZOH to sample the signal, no quantisation
is used. �e beamformer applies a complex multiplication for beamsteering with
a �xed steering angle. At the beamformer a dimension for each beam is used, but
for presentation purposes we will use only a single beam.

�.�.�.� U��T�model

�e U��T� version of the simple beamformer model is illustrated in �gure �.�. �e
�gure also shows the used structural hierarchy. At the top level of the design the
model consists of the environment followed by the beamforming system:

model = environment ▷ system

Below we will explain how the environment and the system are formalised, and
how the model is simulated over a sequence of time steps.

Environment First of all, the environmentmodels one ormore sources together
with their transmitters that send the signals. Wewill assume that a source generates
the signal as it is sent by a transmitter. Suppose

sources = (src� , src� , . . .)

that is
sources = src� ∥ src� ∥ . . .

�e fact that a source generates a signal formally means that each src j is a function
such that src j() is a signal. Each antenna receives the signal from each source
through a channel for which we now model the time delay. A channel ch ji from
source j to antenna i in fact is a signal transformation which delays the signal s j :

ch ji(s j) = delayδ ji (s j)

Since the DoA d j of source j and the position pi of antenna i are known, δ ji can
be calculated as on page ���.

���

�.�.
C
�-������

Environment System

Digital processing

SRC

Analogue frontend

A/D APRF

Analogue frontend

A/D APRF

Analogue frontend

A/D APRF
BF SNKBF SNK

F����� �.�: U��T� simple beamformer model

�e environment now is the total of the sequential compositions for all j, i of
src j and ch ji :

env ji = src j ▷ ch ji

Let
chsi = ch�i ∥ ch�i ∥ . . .

then
sources ▷ chsi

delivers all signals for antenna i. Now let

channel s = chs� ∥ chs� ∥ . . . ∥ chsN

then the total environment is

environment = (∥∗ sources) ▷ channel s

where ∥∗ creates as many copies of sources (in parallel) as needed.

System �e system consists of (i) the parallel composition of a f rontend for
each antenna, (ii) a part which processes the outputs from these antenna frontends
and produces beams, and (iii) the parallel composition of a sink (snk) for each
beam to plot the result, i.e.

system = (∥∗ f rontend) ▷ processing ▷ (∥∗ snk)
Concerning (i), the frontend of each antenna, we remark that it consists of a re-
ceiver rx, an r f frontend and an adc, i.e.

f rontend = rx ▷ r f ▷ adc

�e receiver rx gets delayed signals from each source, i.e. rx is a function which
adds a sequence of delayed input signals into a single output signal as de�ned in
section �.�:

rx =�+

Note that we consider rx here as part of the system under design, and that the
signals from the environment are combined at the receiver antennas. Note also that

���

C
��

��
��

�.
C
��
�
��
��

�

the r f and adc for each antenna are the same. Here we will assume that the signal
transformation r f only passes through the signal, i.e. r f is the identity function,
though for later re�nements of the model, r f can be de�ned di�erently.

�e adc (with sample period h) is de�ned as in section �.�.�:

adch (s) = t � s(�t�h� ⋅ h)

�e frontend is identical for each antenna. �at is possible because the in�u-
ence of the position of the antenna is already accounted for in the delay of each
input signal, as discussed above. To combine the frontends of all antennas into
one component, we simply have to compose as many frontends in parallel as there
are antennas.

Concerning (ii), the processing part consists of antenna processing (ap) and
beamforming (b f), where ap is dealt with in the DT domain and beamforming in
the DF domain. As with the r f frontend we assume that ap is the identity function,
though it might be de�ned di�erently. �ere are as many ap components needed
as there are antennas and their outputs are input for the beamforming operation.

�e de�nition of b f di�ers from the de�nition in section �.� where b f was a
signal in the CT domain, whereas now it is a function from input tokens to output
tokens. �us:

b f�w (�x) = �w
∗ �x
N

In order to wrap the function b f in a DF component, we �rst have to apply the �
operator and then we have to initialise the internal state with an empty state using
the ⇑ operator (see section �.�.�).

�e total processing chain now becomes:

processing = (∥∗ ap) ▷ ((� b f�w) ⇑ [])
where �w is the same steering vector as de�ned in section �.�.

�e function b f calculates a single beam. Without going into details, we men-
tion that in case more than one beam has to be formed using the same antenna
signals, we de�ned a composition operator ▷∗ which duplicates the input signals
to match the number of beamformers. Note that duplication of input signals is not
the same as parallel composition of signal transformers.

Finally, concerning (iii), the snk components plot the signal from each beam
as a side-e�ect and returns a vacuous output.

Simulation �e model as derived above contains components in the CT domain
(sources, channel s, rx, r f , adc), in the DT domain (ap), and in the DF domain
((�b f�w) ⇑ []). �e sequential composition operator takes care that the various
domains are integrated, e.g., by embedding the ap component de�ned in the DT
domain in a CT domain component (see section �.�).

Again, all de�nitions above can be straightforwardly reformulated in Haskell.
Since the composition operators are also de�ned in Haskell, the whole model can
be simulated by evaluating it as a single Haskell program.

���

�.�.
C
�-������

In order to evaluate the model, it �rst has to be applied to the empty signal ().
Since in this case there are many sources, a nested structure of ()’s has to be pro-
vided. Still, we will denote this vacuous input by (). As on page ��� a simulation
calculates the results for a sequence of time steps T:

simulation = resul tsmode l ()(T)
�e sequence of results is de�ned as

resul ts f (T) = y ∶ resul ts f ′(T′)
where

(y, f ′) = f (t)

as explained in section �.�.�. As before, t is the �rst time step in T, and T′ consists
of the remaining time steps in T.

Radiation pattern As an example of the �exibility of the de�nitions, we reuse
the components from the de�nitions above to generate radiation patterns. �is is
achieved by calculating the transfer function over all angles.

�e radiation pattern is calculated by setting the (complex) source signal to
� e j � and calculate the result over all source angles (α, γ)with a �xed steering angle
(α� , γ�):

P(α, γ) = � b f(α� ,γ�)(�x) �
where

�x = (src ▷ channel s ▷ (∥∗ (rx ▷ adc))) () (�)

src () = t � �(α, γ) , e j⋅�π fc t�
Note that the source src now is a function which yields the complex signal includ-
ing its corresponding DoA (α, γ).

Figure �.� shows a radiation pattern of a � by � element array, with positions
that are randomly shi�ed slightly from their original positions, steered to ��° eleva-
tion. �is results in a �attened beam and somewhat chaotic side lobes. Figure �.�
show the radiation pattern of a �-element ULA located along the x-axis. Note the
array is only directional in one dimension.

�.�.�.� Comparison

�e graphical block-diagram representation of Simulink is intuitive and has sim-
ple semantics. However, such a graphical representation is less �exible when the
model is changed during development. A textual representation is easier in that
respect, but keeping an overview of the model is more di�cult. �erefore, a lot
of structural hierarchy is used in the above U��T� model. Furthermore the com-
position operators and aggregate data structures increase �exibility. Although the
de�nitions are cryptic, they are completely independent of the number of antenna

���

C
��

��
��

�.
C
��
�
��
��

�

F����� �.�: �D radiation pattern for a �×�
array steered to (���°,��°)

F����� �.�: �D radiation pattern for a �-
element ULA

elements and sources, while specifying such a model graphically would be quite
laborious and in�exible for more than a few antennas and sources. For that reason
multi-dimensional arrays are used as a data-structure in the Simulink model. �e
representation of the operations on the signals in Simulink is, however, not as ex-
plicit as the aggregate operations in the U��T� model, making it more di�cult to
understand themodel. In addition, with the U��T�model the type checker ensures
that the correct dimension of the aggregate structure is used (each dimension has
a di�erent type for identifying the signal), while in Simulink mistakes are easier.

Ofmajor importance is that U��T� uses exact time delays, while Simulinkmod-
els uses interpolation for simulation (see section �.�).�eU��T�model is therefore
more accurate but also more e�cient. �is is especially relevant for this case study,
as a time delay is used for each transmitter receiver pair.

As an example we simulate a �×� planar array with two sources at a ��° separa-
tion in azimuth angle. �us �×�� time delays are used to implement the channel
between the sources and antenna elements. One source is a �kHz cosine and the
other a �kHz cosine; their combined result is shown in light-grey in �gure �.��. A
simulation is performed, both in Simulink and U��T�, from � s to � s with a (sim-
ulation) step size of �.�� s. �e result when steering the beam in the direction of
the �rst source thereby suppressing the second source is shown in dark-grey. In
the U��T� model this is exactly the result as expected, however, the same system
in Simulink has an error in the range of the step size (a�er the start-up e�ect) as
shown in �gure �.��. �is is because the simulation step size also determines the
granularity of the interpolation in Simulink, while in U��T� it only determines
when a result is calculated for the plot as explained in chapter �.

�e execution time for both models was measured using a �GHz Core � Duo
with �GB RAM. For Simulink R����b the execution time was measured using the
Simulink pro�ler, while for theU��T�model the execution timewas retrieved from
the operating system. �e DoA was used as a parameter for the U��T� simulations
to ensure the results were not cached by the interpreter. �e results are shown

���

�.�.
C
�-������

am
pl
itu

de

-�

-�.�

�

�.�

�

time (s)

� �.� � �.� �

F����� �.��: Beamformer result

am
pl
itu

de

time (s)

F����� �.��: Simulink error

in table �.�. �e numbers are averaged over �� runs a�er � warmup runs. When
simulated in an interpreter, the U��T� simulation is slightly (�.�� times) faster, so
even in the interpreter exact results are gained for a comparable performance. �e
compiledU��T� version is about �� times fasterwhile the compiled Simulinkmodel
is about �.� times faster, giving the U��T� implementation a �.�� times speed-up
compared with the Simulink implementation. For both, the execution time scales
about linearly with the number of antennas.

T���� �.�: Simple beamformer execution times

Interpreted Compiled

Simulink 0.987 s 0.394 s
U��T� 0.927 s 0.118 s

Speed-up 1.06 3.35

�.�.� Adaptive beamformer

For the adaptive beamformer, the simple beamformer is extended with E-CMA as
adaptive beam-control algorithm. �is introduces feedback in the model because
of the control algorithm. Furthermore, E-CMA uses iterative updates of the steer-
ing vector and therefore has state.

E-CMA is a tracking algorithm, which needs the initial DoA of the source.
By using recon�gurable hardware, the beamforming functionality can be replaced
temporarily by DoA estimation. For the adaptive beamformer case we assume the
initial positions of the sources are known.

�e source signal is QPSK modulated, of which the �xed constellation points
are exploited by the E-CMA algorithm to improve tracking of the source. As input
data we use �bit symbols which are encoded as a constellation point bymultiplying

���

C
��

��
��

�.
C
��
�
��
��

�

am
pl
itu

de

-�

-�.�

�

�.�

�

time (ns)

�� �� �� ���

F����� �.��: QPSK modulated signal

an
gl
e(
°)

-��

-��.�

�

��.�

��

time (µs)

��� ��� ��� ���

F����� �.��: DoA of source (dark grey) and
A-CMA steering angle (light gray)

with π
� to get the phase of the carrier signal. Such a QPSK modulated signal (from

the U��T�model) is shown in �gure �.��. �ese signals have a large bandwidth, be-
cause of the discontinuous changes of the signal. To limit the bandwidth typically
(e.g. for the DVB-S application [��]) a pulse shaping �lter is used at the transmitter
to suppress high frequency components. At the receiver, a matched �lter is used to
suppress noise before demodulation. �e same root-raised-cosine (RRC) �lter is
used for both the pulse shaping �lter and thematched �lter, and is implemented by
a ��-tap FIR �lter [��]. �e signal is up-sampled three times because of the �lter.

�.�.�.� Simulink model

Figure �.�� shows the system part of the Simulinkmodel. �e antenna signals a�er
the AP and the output of the BF are used as input for E-CMA (BC) to compute
the next steering vector. �e current steering vector is input for the BF, so there is
a delay for the steering vector breaking the feedback loop (this is implemented by
letting BC store the last steering vector while computing the next one).

A variable time delay is used to implement the channel (as for the simple beam-
former). Note that because the DoA of the source is changing, the delay is indeed
varying as it depends on the DoA of the signal. �e phase of the carrier changes at
the symbol rate of ��Msymbols�s or every ��.��ns. �e simulation step size must
be smaller than this, otherwise the time delay block interpolates a signal with a
phase that changes each sample. Including the three times up-sampling for the
pulse shaping �lter, we will use a �� times smaller step size. �e interpolation er-
ror is in the range of the step size, causing a relatively large �� amplitude error.
However, as for the DVB-S application, the SNR is expected to be less than ��dB.
�is amplitude error is acceptable (�� amplitude error is about ��dB SNR).

���

�.�.
C
�-������

F����� �.��: Simulink adaptive beamformer model

�e pulse shaping �lter reduces the bandwidth of the input signal. A�er �l-
tering it can be considered a narrow-band signal and we can also approximate
the channel with a complex multiplication by a phase-shi� (section �.�.�). �is
removes the need for up-sampling, reducing the number of simulation steps ��
times (from �� times to � times, three times up-sampling is still needed for the �l-
ter). Furthermore, the approximation error is smaller; with a carrier frequency of
��GHz and a bandwidth of ��MHz the error is about �������� =�.��.�e Simulink
model with a phase shi� approximation is therefore included for comparison.

�.�.�.� U��T�model

We start with giving the de�nitions of a single src that replaces the srci ’s in the sim-
ple beamformer model, and which will be explained below. �e QPSK modulated
source signal is de�ned in U��T� as:

src () = ratedt (input) ▷ qpsk ▷ rrc ▷ dac

qpsk (x) = e j⋅x π
�

rrc = f ir�h ⇑ ��

where �h consists of the RRC �lter coe�cients. �e input is a sequence of random
�bit symbols, which are QPSKmodulated by qpsk and �ltered by rrc, before being
converted the analogue domain with dac.

As such, the input, QPSK modulation and FIR �lter are de�ned in the DT do-
main, while the components of the environment are de�ned (as for the simple
beamformer) in the CT domain. �erefore, the sample rate of the DT signals must
be de�ned to connect those components, which is achieved by ratedt with dt the
sample period. �e output signal of ratedt (input) is a piecewise continuous func-
tion of time, causing the rest of the DT components to be li�ed to CT components
as explained in section �.�. As a result the dac is essentially passing through the

���

C
��

��
��

�.
C
��
�
��
��

�

Digital processing

AP
AP

AP
BF RRC SNK

E-CMA

BF RRC SNK

E-CMA

F����� �.��: U��T� adaptive beamformer model

signal. For simplicity we have up-sampled the input symbols three times so that
they have the correct rate for the pulse shaping �lter�.

�e rest of the model (e.g. model , environment, system, etc.) is the same as
for the simple beamformer, except for the processing component which is shown
in �gure �.��.�e signal �owdiagram is the same as for the Simulinkmodel, except
that in the Simulink model the RRC �lter block is included in the BF block.

In �gure �.�� the component consisting of b f , rrc and ecma contains a feed-
back loop, preceded by ap. �us, the structure of this component is

processing = (∥∗ ap) ▷ (� F)

with F of the form

F = (�x , �w) �⇒ (y, �w′)
where
(�x , �w)� (((� b f) ⇑ []) ▷ rrc)� y
(y, �x)� (ecma ⇑ �w�)� �w′

Here, the arrow �⇒means that F in addition contains an internal state which is up-
dated each time that F is evaluated. �e de�nition of F can be read from �gure �.��
in a straightforward way: Between the two� arrows there is a component which
has internal state. On the le� hand side there is the input to the component, and
on the right hand side there is the output of the component. During evaluation of
the component, its internal state is updated. In Haskell this translates directly to
the arrow notation[��].

�e de�nition of ecma is a discrete version of the de�nition used for the speci-
�cation in section �.�. In addition, state is used for the steering vector. �us, three
components in the U��T� model have state: the pulse shaping �lter, the matched
�lter and E-CMA. In addition, there is one feedback loop for the beamcontrol al-
gorithm.

�A sample rate conversion component is a little involved as it needs to save the last sample as state
and repeat it n times as output, with n the rate conversion.

���

�.�.
C
�-������

�.�.�.� Comparison

For comparison, we will use a single source with random input symbols. For the
array we will use a ��-element ULA with the antennas at λ��, and the source has a
DoA that changes in a sine wave motion from �° to ��° azimuth and back, i.e. half
a period of the sine wave. �e symbol rate is ��Msymbols�s, which is up-sampled
three times to ���MS�s. �is results in a step size of about ��ns for the Simulink
model with a phase shi� based channel and is also used as simulation step size for
the U��T�model. �e Simulink model with a time delay based channel has a step
size of �ns.

�e execution times of a simulation from �µs to ���µs averaged over � simu-
lations are shown in table �.�. Note that the time delay Simulink model computes
about ��� ��� simulation steps and the other two about �� ��� simulation steps.
�e Simulink model with time delays takes �� times longer than the model with
phase shi�s when interpreted and � times when compiled. �is is expected as ��
times asmany samples are computed.�e U��T�model is about � times faster than
the Simulink model with phase shi�s (for the compiled versions), with the U��T�
model using an exact time delay based implementation for the channel.

T���� �.�: Adaptive beamformer execution times

Interpreted Compiled

Simulink with time delays 826.326 s 38.686 s
Simulink with phase shi�s 23.470 s 8.004 s
U��T� 18.926 s 2.951 s

�.�.� Hierarchical beamformer

For the hierarchical beamformer, the adaptive beamformer is extended with two
stage beamforming; the �rst stage is in the analogue domain and the second stage
is in the digital domain. Furthermore, we have exchanged the beamcontrol algo-
rithm for A-CMA (see section �.�.�). A-CMA determines the DoA of the QPSK-
modulated source signal (the same as used for the adaptive beamformer).�eDoA
is used as a steering angle for both the analogue and the digital stage. As A-CMA
computes a steering angle, we will use a LPT as beamsteerer at both stages.

�.�.�.� Simulink model

Figure �.�� shows the system part of the Simulink model. We have added an ana-
logue beamformer (A-BF) a�er the RF fontend and before the ADC. Both the ana-
logue beamformer and the digital beamformer (D-BF) are phase shi� based. Fur-
thermore, we have added a beamsteerer based on a LPT below both beamforming
stages (A-BS and D-BS).�e beamcontrol block (BC) was changed to A-CMA and
the steering angle (theta) is used as input to the beamsteerers. As such, the steering
angle is converted to the analogue domain for the analogue stage using an DAC.

���

C
��

��
��

�.
C
��
�
��
��

�

F����� �.��: Simulink hierarchical beamformer model

�e rest of the model is the same as for the adaptive beamformer, i.e. a QPSK
modulated source signal and time delays for the channel are used.

�.�.�.� U��T�model

�e U��T�model of the analogue front-ends and the digital processing is shown in
�gure �.��. As can be seen, the model is more complicated than before because
of a double feedback loop from the A-CMA block. It is again the same as the
Simulink model, except that some of the names are changed and the blocks are
slightly rearranged in position to match with the de�nitions below. �e model of
the environment is the same as for the adaptive beamformer.

We will start with the de�nition of the digital processing part:

processing = (∥∗ ap) ▷ (� G)

with G of the form

G = (�x , θ) �⇒ ((y, θ′), θ′)
where

θ � l pt � �w
(�x , �w)� (((� b f�w) ⇑ []) ▷ rrc)� y
(�x , y)� (acma ⇑ θ�)� θ′

�e processing component is comparable with the E-CMA version of the adaptive
beamformer. �e di�erences, besides the beamcontrol algorithm, are that a LPT
is used to determine the steering vector �w from the steering angle θ, and that the
steering vector from acma is duplicated; the outer one is for the feedback loop
to the digital beamformer and the other one is an extra output of the processing
component.

���

�.�.
C
�-������

System

Digital processing

D/AAnalogue frontend

BF

LPT

A/D APRFRF

Analogue frontend

BF

LPT

A/D APRFRF

Analogue frontend

BF

LPT

A/D APRFRF
BF

LPT

RRC SNK

A-CMA

F����� �.��: U��T� hierarchical beamformer model

�e de�nition of the system follows as:

system = � ((∥
∗ f rontend) ▷ processing) ▷ (∥∗ snk)

�e processing component now outputs a beamformed signal as well as a steering
angle from A-CMA.�is steering angle is fed back to the analogue beamformer as
extra input to each f rontend (in a hierarchical beamforming the�rst stage consists
of multiple sub-arrays, see section �.�.�).

It is still ongoing research how to combine a feedback loop in the CT domain
with state, as discussed in section �.�.�.�. Without state, the feedback loop must
be re-computed from initial situation at time t = � until the simulation time t for
each simulation step. To provide a fairer comparison we have therefore moved the
“analogue” beamforming stage to behind the ADC, thereby allowing state. Each
frontend is therefore de�ned as:

f rontend = ((∥∗ (rx ▷ r f ▷ adc)) ∥ l pt) ▷ b f

�e sequence of components is similar to the frontend as de�ned for the simple
beamformer. However, now there is a parallel composition of rx, r f and adc for
each antenna from the sub-array, and this composition is in parallel with an LPT
(l pt) and followed by a beamformer (b f).

�.�.�.� Comparison

A simulation is performed with �-elements for the �rst stage and �-elements for
the second stage. �erefore, the total number of antennas is ��, as it was for the
adaptive beamformer. Also the same simulation scenarios is used, i.e. the source
has a DoA that changes in a sine wave motion from �° to ��° azimuth and back.

�e output of the A-CMA algorithm (the steering angle) of the U��T�model is
plotted over time in �gure �.��. �e DoA of the source is shown in dark grey and
the steering angle from A-CMA is shown in light grey. As can be seen, A-CMA
correctly follows the DoA but slightly lags behind.

���

C
��

��
��

�.
C
��
�
��
��

�

�e execution times of a simulation from �µs to ���µs averaged over � sim-
ulations are shown in table �.�. Note that A-CMA is a more complex algorithm
than E-CMA. As a consequence execution times are longer for all simulations, es-
pecially for the interpreted Simulink simulation with time delays and the U��T�
simulations. U��T� has also become slower than the Simulink simulation with
phase shi�s. We expect this is the case because the U��T�model uses a naive imple-
mentation of matrix multiplication, while Simulink is highly optimised for matrix
operations. Nevertheless, U��T� still o�ers a model using exact time delays at a
reasonable increase in execution time (only �� for the compiled versions), and is
much faster than the Simulink model using time delays (about �� times for the
interpreted version and � times for the compiled version).

T���� �.�: Hierarchical beamformer execution times

Interpreted Compiled

Simulink with time delays 2455.014 s 78.502 s
Simulink with phase shi�s 29.142 s 11.954 s
U��T� 53.390 s 12.425 s

�.� P�����������

In chapter � we found that beamforming is the most computationally intensive
part of the system and that it therefore must be partitioned over multiple cores.
Figure �.�� illustrates this transformation. Beamcontrol processing is performed
far less o�en (about � × ��� times less o�en for the DVB-S case, i.e. ��MS�s versus
��Hz array dynamics), so we expect that beamcontrol processing is performed on
a single tile as there is enough time for computation and communication (for low
cost algorithms such as E-CMA and A-CMA).

In section �.�.� we discussed hierarchical beamforming; beamforming is per-
formed in multiple stages while the beamsteer correction is distributed over the
stages. �is approach is thus very suitable to partition the beamforming operation.

In section �.� we de�ned exactly such a model transformation, a divide-and-
conquer approach which distributes a distributive operation over a reduction op-
eration. In case of PS based beamforming, beamforming is de�ned as the dot-
product of the antenna signals (�x) with a correction vector �w (see above).�us, the
distributive operation is a complexmultiplication (with the steering vector weight)
and the reduction operation is a sum.

A nice property of this model transformation is that each part in the partition-
ing performs the same functionality. �e transformation on the beamformer is
then de�ned as:

distributen (b f (�w , �x))

with the de�nition of distribute from section �.�. Note that this de�nition is in-
dependent of the number of antenna elements. All antenna signals and steering

���

�.�.
P�����������

RF A/D AP BFsource

Data�ow

Compl
ex

Compl
ex

Compl
ex

FIR

Compl
ex

Compl
ex

Compl
ex

FIR

Compl
ex

Compl
ex

Compl
ex

FIR

Compl
ex

Compl
ex

Compl
ex

MAC

Compl
ex

Compl
ex

Compl
ex

MAC

Compl
ex

Compl
ex

Compl
ex

MAC

Compl
ex

Compl
ex

Compl
ex

MAC

Compl
ex

Compl
ex

Compl
ex

MAC

sink

F����� �.��: Partitioning

weights are split into parts of size n resulting in m sub-vectors. �ese m parts are
beamformed with the �rst element of the sub-vector as reference, so the steering
vector weights are normalised to the �rst element. �e results of these beamform-
ers are then recursively split into parts and beamformed in turn, with as weight
vector the weights of the �rst elements of the sub-vectors. As here b f is a DF com-
ponent, the result is a number of b f components for beamforming the sub-vectors
and the later stages.

�.�.� Granularity

As the partitioning of the beamformer is now parameterised over the number of
elements (n) to beamform per part, the next step is to determine a suitable n. �is
is achieved by assigning costs to computation and communication for the target
architecture. �e cost can for example represent the price, the energy e�ciency
or maintainability, i.e. some combination of non-functional requirements, and is
very dependent on the application and the speci�c situation. As an example, wewill
base the cost on resource usage in terms of number of clock cycles for computation
and number of connections for communication; multiplication has a cost of �� and
addition has a cost of �, the communication cost is equal to the number of inputs
and outputs of the component.

Single tile Suppose a beamforming system with �� antenna signals as input and
a single beam as output is partitioned.�e simplest architecture consists of a single
tile, i.e. no partitioning is performed. For a single tile architecture, the computation
cost is �� ∗ �� + �� ∗ � = ��� and a communication cost of �� + � = ��.

���

C
��

��
��

�.
C
��
�
��
��

�

T���� �.�: Partitioning cost

Single tile Fully partitioned Constrained

Computation cost 693 693 693
Communication cost 65 189 105

Tiles 1 64 21
Computation cost per tile 703 11 33
Communication cost per tile 65 3 5

Fully partitioned A single tiled architecture is not very scalable and is probably
not feasible, so we want to distribute the beamforming over multiple tiles. �e
other extreme is a fully partitioned beamformer, i.e. two antenna elements are
beamformed per part. As for each part the weight vector is normalised, one of the
weights becomes � removing the need for amultiplier for that weight. Each �-input
beamformer thus consists of a single multiplication and addition. Each tile has a
computation cost of ��+ � and a communication cost of �+ �, totalling ��∗ �� = ���
and �� ∗ � = ���.

Constrained Amore realistic example has constraints for the partitioning set by
the architecture, i.e. a tile has a maximum of computation and communication
resources. Assume we constrain each tile to a computation capacity of �� and a
communication capacity of �, this would allow for beamforming of four inputs
with a computation cost of � ∗ �� = �� and a communication cost of � + � = �. �e
function distribute with n = � and �� inputs then results in �� tiles, �� for the �rst
stage, � for the second stage and � for the �nal stage, totalling �� ∗ �� = ��� and
�� ∗ � = ���.

Evaluation �e three di�erent partitionings are summarised in table �.�. As ex-
pected, the computation cost stays the same, but the communication cost increases
with a smaller granularity (larger number of parts). Of course, a smaller granularity
lowers the computation and communication cost per tile as it is one of the reasons
for partitioning (the other being parallelisation).

Using a model transformation for partitioning allows us to quickly evaluate
di�erent granularities for partitioning. Moreover, this is possible anytime during
development. Evaluating even these three options in Simulink is very cumbersome
as it requires one to draw each tile of the solutions, because they are not easily cap-
tured in block-diagrams. With the distribution function, we can transform the
solution from one with a single tile (with n = ��), to one with many tiles (with
n = �) or anything in between and for any number of antenna inputs. �is trans-
formation is simply not possible in Simulink.

���

�.�.
P�����������

F����� �.��: �� antenna beamformer F����� �.��: �� antenna beamformer

�.�.� E-CMA on a tiled architecture

Returning to our case study, consider the adaptive beamformer with the E-CMA
beamcontroller is to be partitioned for a tiled architecture. �e beamformer is
intended for the DVB-S application, so the data rate is ��MS�s.

Assuming the tiled architecture presented in section �.�.�, which consists of
tiles which can process ���Mops and a ���MB�s NoC, we �nd that we can beam-
form � antenna signals per tile. For �� antennas this results in a hierarchical beam-
former with � (DF) processes (shown in �gure �.��) and thus � tiles. For �� an-
tennas the beamformer consists of � processes, shown in �gure �.��, which for
example matches a �×� grid of tiles well, leaving some processing capacity for the
beamcontrol calculations. Both of these partitionings are generated automatically
using the distribute transformation with n the partitioning granularity (the num-
ber of elements per part), only the number of the antennas are changed. We found
in section �.�.� that ��� antennas is a feasible array for the DVB-S application, re-
quiring �� tiles on this architecture.

For the case study, we experiment with an existing realised platform, the LEON
S�C platform presented in section �.�.�. �e LEON S�C platform consists of
three M������ processors and a NoC. Each M������ has � ALUs and runs at
��.��MHz on the FPGA prototype realisation, however, we expect an ASIC reali-
sation to run at about ���MHz. Each ALU has three levels; the �rst level can com-
pute four additions, subtractions or logic operations, the second level can compute
aMAC operation, and the third can perform a butter�y operation. See appendix B
for an overview of the M������ architecture. �e M������ can perform one
complexmultiplication per cycle, so � antenna signals can be beamformed per pro-
cessor (tile). With three tiles and � inputs per tile the maximum array size is �; the
�rst stage is performed on two M������s (� elements each) and the second stage
on the third M������ (leaving some computation capacity for e.g. beamcontrol
processing). �is is by far not su�cient for the DVB-S application.

���

C
��

��
��

�.
C
��
�
��
��

�

�.� M������

During the mapping phase the parts of the partitioned application are assigned to
tiles on the tiled architecture. Wehave partitioned the beamforming to use themax-
imum computation and communication capacity possible in order to reduce the
data rate as soon as possible. �e mapping is therefore relatively straightforward;
as each part is partitioned to use themaximum resource capacity of a tile, each part
is assigned to its own tile. For more dynamic automated run-timemapping in case
of multiple changing applications on a tiled architecture see [��, ��].

For the mapping and implementation step, we will continue with the adaptive
beamformer case for the DVB-S application on the LEON S�C platform. Besides
the beamformer and beamcontroller, a RRC matched �lter for QPSK modulated
signals is included as the cost function of E-CMA is based on theQPSKmodulation
points. �e input data for the beamformer is generated by the U��T�model.

�e LEONS�Ccan only performbeamforming for an �-element array, as there
are only three M������s available and we also need to compute the second stage
and E-CMA on the third M������. In addition, the matched �lter must also be
computed. With only four clock cycles per sample, this must also be performed
on dedicated tiles, which are not available on the LEON S�C.�erefore, the beam-
forming operation and the �ltering are time division multiplexed, i.e. the opera-
tions are alternated during execution. �is further reduces the input data rate of
the beamforming application supported on the platform. Nevertheless, we will use
this platform for mapping and implementation as proof of concept and to evaluate
an actual implementation on prototype hardware.

�.�.� Assignment of kernels

�e processing of the adaptive beamformer is partitioned to processing kernels and
encapsulated as DF processes. Next, these processes are assigned to tiles.

Beamformer �e beamformer was partitioned into three DF processes in the
previous section. �e two processes of the �rst stage are mapped on two dedi-
cated M������s, requiring � clock cycles for the � inputs each. �e second stage
beamforms only the two results from the �rst stage, requiring � clock cycle. �is is
mapped to the third M������.

Baseband processing �e baseband processing (matched �lter) uses a separate
�lter for the real and imaginary parts of the complex signal resulting from the beam-
former. Each �lter is implemented as a process on a separate M������ perform-
ing a ��-taps RRC FIR �lter. �e �lter is executed a�er the beamformer for each
beamformed sample. AnN-taps FIR �lter can bemapped on theM������ inN��
clock cycles [��]. Hence, each of the two �lters can be executed by a M������ in
���� = � clock cycles.

���

�.�.
M
������

� � � � � � � � � � ��

Beamforming

Beamforming
BF

Matched �lter

Matched �lter

Extended CMA (E-CMA)

�w update

�w updateM������ �
M������ �
M������ �

F����� �.��: Scheduling of the processing blocks on �M������s

Beamcontrol E-CMA is used for beamcontrol processing and includes the beam-
steerer. E-CMA is more complex than the beamforming operation, but as we have
already mentioned, it is computed less o�en. We have veri�ed that the update rate
of E-CMA can be decreased a few hundred times in relation to the sample rate be-
fore symbol errors start to occur and the algorithm becomes unstable. �erefore
we will use an update rate of ρ = �

��� = �.��� of the antenna sample rate. As it is
computed much less o�en, we can map the beamcontrol processing to a single tile.

�.�.� Scheduling

�e scheduling of the beamformer and the matched �lter is shown in light grey in
�gure �.��. For each signal vector from the antennas the processing takes �� clock
cycles on the M������. A�er executing the beamforming operation ��� times E-
CMA is executed. �e execution of E-CMA is illustrated in dark grey in �gure �.��.
As we will �nd out below, the implementation of E-CMA requires �� clock cycles,
while updating the steering vector requires another � clock cycles (�w�. . .� is calcu-
lated by one M������ while the other calculates �w�. . .�). Since the M������s
communicate via the NoC which is clocked at a � times higher frequency, the out-
put sent from one M������ to the next is already available at the next M������
clock cycle. �erefore, communication does not introduce latency in the schedule.

�e schedule shows the utilisation of the M������s is not optimal. Although
the schedule could be improved, themain problem is a dependence of thematched
�lter on the beamformer in combination with a small number of tiles, and the
limited amount of computations in the second stage. Pipelining the beamformer
and the matched �lter would, in the case of consecutive beamforming operations,
reduce the number of free slots from �� to � (the matched �lter is moved � slot to
the le� in �gure �.��). E-CMA can be pipelined; it is started a�er the �rst clock
cycle of the matched �lter. �is is possible because the last � taps of the FIR �lter
are calculated �rst, such that the �lter output can be obtained a�er one clock cycle
already. In the remaining � cycles, the other �� �lter taps are processed. However,
as E-CMA is only executed once every ��� samples and as the rest of E-CMA can
not be parallelised further (we will �nd below that an iterative algorithm is used),
this has a limited e�ect.

���

C
��

��
��

�.
C
��
�
��
��

�

M������ � M������ �

w[�] w[�] w[�] w[�]

x[�] x[�] x[�] x[�]

scale

×
scale

×
scale

×
scale

×

+
+

+

w[�] w[�] w[�] w[�]

x[�] x[�] x[�] x[�]

scale

×
scale

×
scale

×
scale

×

+
+

+

M������ �

scale scale

+
y

F����� �.��: Mapping of the beamforming operation performed by �M������s

�.� I�������������

We have implemented the adaptive beamformer on a FPGA prototype realisation
of the LEON S�C platform (section �.�.�). Because the M������ processors on
the LEON S�C platform only operate at ��.��MHz, the sample rate of the antenna
signals is lowered to �.�MS�s (complex).

Ideally code generation would take the de�nitions of the functionality of each
DF process to generate an implementation for each of the cores of the tiled archi-
tecture. With code generation as a model transformation (i.e. the compiler is the
model transformation), this would give us the means to verify that the implemen-
tation is correct and to perform design space exploration with di�erent implemen-
tations (i.e. for di�erent kind of processors on a heterogeneous platform). Unfortu-
nately such a model transformation is not developed and developing it is complex
and might not even be possible for e.g. the M������, so instead we will provide a
manually generated implementation of the beamforming, matched �lter and beam-
control operations [��].

�.�.� Beamformer

�e beamforming operation requires one complexmultiplication and one addition
per beam per sample per antenna. A complex multiplication on the M������ is
implemented using four of the �veMAC units at level � of the ALUs. Level � of the
ALUs is used for the addition. �e �nal mapping is shown in �gure �.��. Scaling
of the input signals is used at each stage so that the dynamic range at the output is
the same as at the inputs.

���

�.�.
I�

����
��������

�u��

∠u × sin (u) −

u�

×

Re
Im

C u
v

×

×

�w [t] +

�x [t]

y [t]

�w [t + �]

�

�
+

−

�
µ

−

F����� �.��: Block diagram of E-CMA

�.�.� Baseband processing

�e matched �lter is implemented using two ��-taps FIR �lters for the real and
imaginary parts of the beamformer output. A FIR �lter tap maps directly on the
level � MAC unit. �erefore with � ALUs � �lter taps are calculated in one clock
cycle, which is performed � times for the matched �lter.

�.�.� Beamcontrol

�e beamcontrol algorithm is more di�cult to implement on the M������. We
give a summary of the implementation presented in [��, ���]. �e formula for
E-CMA is repeated here (with discrete inputs x):

�w[t + �] = �w[t] − µ ⋅
� ⋅ ��y[t]�� − �y[t]��� − j ⋅ (sin (� ⋅ ∠y[t]))

y[t]
⋅ �x[t]

A block-diagram representation is shown in �gure �.��. Note that the complicated
part of the equation only consists of scalar operations.

We are using the �.�� �xed-point arithmetic modus of theM������ for the im-
plementation of E-CMA,meaning values are in the range of [� . . . �� and need to be
scaled at various places in the algorithm. Scaling is implemented e�ciently using
the level � shi�ers of the ALUs, limiting the scaling to powers of two, however. As
the QPSK signal has amagnitude around �which can become larger than � because
of noise, the input signals are scaled by a factor ��� (otherwise magnitudes larger
than � are saturated causing problems for E-CMA as the gain can not converge
to �). �e results of both �u�� and u� are scaled by a factor � to include the input
scaling into the E-CMA algorithm. As the angle ranges from -π to π, it is scaled

���

C
��

��
��

�.
C
��
�
��
��

�

by π for both the arc-tangent used for ∠u as the sin(u) computation. �is maps
the angle from [-π . . . π� to [-� . . . �� matching �.�� �xed-point values and thereby
allowing over�owing of the angle values. Furthermore, analysis of the weights of
the steering vector �w] show that their value can go up to about �. �erefore, the
normalisation factor �

N of the beamforming operation is applied to all the weights
of �w to keep their magnitude smaller than � (giving the same results as applying
the factor to the beamformer output).

Most operations can be implemented on the M������ ALUs directly, except
for the coordinate transform operations (�u� and∠u, for which we use the coordi-
nate rotation digital computer (CORDIC) algorithm), the sine computation, and
the complex division (for which we use lookup tables). For completeness, these
implementations are presented in appendix B. Of those operations, the sine com-
putation has a limited accuracy of ��bit because it uses a lookup table (LUT). For
E-CMAwithQPSKmodulation, this is accurate enough as the constellation points
are ��° apart. For a larger number of phase constellation points the accuracy may
no longer be acceptable and a larger memory or a CORDIC implementation must
be used. Furthermore, the complex division requires a scale factor so that the di-
vision does not saturate for the M������’s �xed-point representation. �erefore,
the multiplication with µ (�.��) and the scaling of the weight vector (���) are used
as a scale factor. For this scale factor, the complex division saturates if ��v� < �.��
(see appendix B). As for E-CMA the denominator �v equals y and since E-CMA is
used to steer �y� to �.�, the probability of a lookup of one of these saturated values
is very low.

�e total number of clock cycles required is ��: �� for the CORDIC algorithm,
� for the complex multiplication, and � for the rest of the operations. �e scalar
result is sent to the other �M������s, used by each to update half of the steering
vector. �e update consists of a complex multiplication and addition using � clock
cycle per weight and implemented using level � of the ALUs.

�.� R������

A system design for a generic beamforming platform was developed using the
U��T� design �ow. Starting with a simple beamformer, which was extended with
adaptive beamforming and hierarchical beamforming, the design was developed
from speci�cation to partitioning. �e adaptive beamformer was further devel-
oped all the way to implementation on a tiled architecture. �e speci�cation was
divided into sub-components during the co-design phase, a�er which it was com-
pared with Simulink. Next, the beamformer was partitioned over multiple tiles.
During these model-based design steps a single model was developed and re�ned
using the domains and model transformations provided by U��T�. Next, a manual
mapping and implementation of the adaptive beamformer on the LEON S�C plat-
form was presented. In this section we will evaluate U��T� and present the results
of adaptive beamforming on the LEON S�C platform.

���

�.�.
R������

F����� �.��: Framework

�.�.� U��T�

�e main evaluation criteria for U��T� are the e�ectiveness and usefulness of the
approach. As such criteria are di�cult to quantify objectively, we will present the
applicability and �exibility of U��T� for the phased array beamforming case study,
in order to provide an indication.

�.�.�.� Applicability

Figure �.�� shows a screenshot of the complete framework during the simulation
of the beamforming case study with a �×� array, a ��° steering direction and two
sources, one of which is �ltered away. It shows the results of a simulation of the
CT, DT and DF domains in a single model, including structural hierarchy in the
system overview and the processes during execution of the DF model. �e model
is executed for simulation, allowing step by step evaluation of the behaviour of the
system. Additionally a radiation pattern shows the current steering direction of
the beamcontroller.

Performance �e model shown in �gure �.�� is the same model as used for
the simple beamformer during the co-design step. We have already shown that
the U��T� model is at least as computationally e�cient as an equivalent Simulink
model (and � times faster for the compiled version), while providing exact simula-
tion of the environment. To increase the accuracy of the Simulink model, the time
step must be reduced making it even less e�cient as the model is evaluated more
o�en than the U��T� model. As a result, U��T� is much more computationally
e�cient for the adaptive and hierarchical beamformer than a Simulink model us-

���

C
��

��
��

�.
C
��
�
��
��

�

0

0.1

0.2

0.3

0.4

3x3 5x5 11x11

0.14
0.060.04

0.2
0.20.2

Time (s)

Framework GUI Semantic model
Radiation pattern Dataflow model

0

250

500

750

1000

3x3 5x5 11x11

766

16261 214
4517

Memory (MB)

0

0.5

1

1.5

2

3x3 5x5 11x11

0.72

0.20
0.06

0.720.680.60

0

3.8

7.5

11.3

15.0

3x3 5x5 11x11

8.52
4.052.70

0

1000

2000

3000

4000

3x3 5x5 11x11

2003

418154
839

17767

0

1500

3000

4500

6000

3x3 5x5 11x11

2003

418154
2947

766439

Sem
antic

M
odel

+ R
adiation

pattern
+ D

ataflow
m

odel

F����� �.��: Pro�ling results (time (s) and memory (MB)) for the simple beamformer case
study on a �GHz Core � Duo with �GB RAM.

ing time delays. It is also more e�cient than a Simulink model implemented with
phase shi�s and using the same time step for the adaptive beamformer case. For
the hierarchical beamformer, the execution time of U��T� is about twice as long
and the compiled version takes about �� longer than the Simulink model with
phase shi�s. However, in these cases U��T� still has the advantage of supporting
exact time delays.

Pro�ling results for an increasing number of antennas (�×�, �×� and ��×�� ar-
rays) are shown in �gure �.��. �e top two graphs show the results of only the CT
and DT version of the model (with the beamformer in the DT domain). �e next
two graphs include the radiation pattern, which is computationally expensive. �e
�nal two also include the data�ow model (by li�ing the beamformer function to a
DF component), including the visualisation of the DF processes. We can see that
the memory requirements grow faster with more antennas than the processing re-
quirements.�is limits the simulation to a fewhundred antennas for a �GHzCore�
Duo with �GB RAM. Further, the radiation pattern calculation becomes dominat-
ing with larger arrays. Note that the instantiation of the wxWidgets toolkit for the
graphical user interface (GUI) has a relatively large but �xed processing overhead
compared to the model. With the data�ow model the GUI becomes dominating
and is also dependent on the array size. �is is because of the redrawing of the
Bezier curves and the channel contents of the data�ow model during simulation,
which uses a naive implementation and is therefore the �rst candidate for optimi-
sation. As the framework was developed as a proof of concept, we expect there is
ample room for improvement in e�ciency.

���

�.�.
R������

T���� �.�: Code size [lines]

Framework Case

Support 811
GUI 411
System model 141 438
Radiation pattern 10 46
Data�ow model 1143 135

Total 2516 619

Designer productivity Designers can e�ciently and easily extend a model with
more detail by just a few lines of code, as we have seen for the three beamforming
cases during co-design. For example, we exchange the simple sine source from the
simple beamformer with a QPSK modulated source in the DT domain or we add
an analogue beamformer for the hierarchical beamformer. Much of the design �ow
is automated by the framework, i.e. multi-domain composition, communication
and synchronisation for a DF model and model transformations. Table �.� shows
the code size in lines. We see that the framework is ���� lines, half of which is of
the data�ow support. �e case is about ��� lines, with the majority in the system
model as this implements the functionality of the system and is re-used for the
data�ow model. A large part of the code (the framework) is thus re-useable, pro-
viding the glue-logic.�e additional code needed because of the design framework
is very little, about ��.

It is di�cult to estimate and compare the development time of the case study, as
it was used to develop to the framework. �e graphical representation of Simulink
is more intuitive when developing the initial model. However, with equal knowl-
edge of the tools, we expect the U��T� approach to be more productive because
the higher abstraction level of the implementation improves �exibility (see below)
making adjustments easier. Furthermore, changes are checked by the type system
and transformations are de�ned to be correctness preserving.

�.�.�.� Flexibility

�e presented design �ow of U��T� and the guidelines for specifying the algorithm
using aggregate operations aim at increasing the �exibility. For example, the num-
ber of sources or antenna elements and their positions can be changed without the
need to change the model, and higher-order model transformations are used for
automated partitioning. �is enables us to quickly evaluate design alternatives.

Automation Composition, simulation and multi-domain integration are auto-
matically provided by the framework. Implementing the functionality is of course
manual. Design decisions for dividing functionality over domains and specifying
the algorithm so it can be partitioned e�ectively are also the designer’s responsibil-
ity. Still, li�ing functions to operate on multiple elements, and partitioning using
data and control parallelism with such aggregate structures is automated.

���

C
��

��
��

�.
C
��
�
��
��

�

Scalability Specifying the algorithm at a higher abstraction level makes it inde-
pendent from the number of elements and enables automated model transforma-
tions, thereby improving the scalability of the design. �e framework itself (for
our case) scales linearly in performance with the number of antennas as shown in
�gure �.��.

�.�.� Adaptive beamforming on the LEON S�C platform

As explained, model transformations for automated mapping and code generation
are not integrated or available for U��T� (yet). �erefore the adaptive beamformer
was mapped and implemented on the LEON S�C manually.

�.�.�.� Applicability

For simulation and veri�cation, a comparable synthetic scenario is used as in sec-
tion �.�.�. A ULA is mounted on a moving vehicle, driving towards the source at
��km�h. When driving, the vehicle is moving to the le� and right with respects to
the source in a sine wave motion with an amplitude of ��°, i.e. ��° peak-to-peak,
and at ���Hz. AQPSKmodulated source is used with random data and signals are
generated for each antenna by the U��T� model. �ese antenna signals are beam-
formed and tracked by E-CMA.

�e results are veri�ed by analysing the E-CMA cost function over time (see
section �.�.�), by plotting the constellation points of the the output signal and by
comparing the demodulated output data with the input data. Figure �.�� shows the
E-CMA cost function JE−CMA (section �.�.�). �e costs vary between �.�� and �.�,
corresponding to a maximum amplitude error of

√
�.�� ≈�.�� and a maximum

phase error of arcsin �
√
�.��� ≈��°. In practice the error will consist of both an

amplitude and phase error and each individual error will therefore be smaller. Nev-
ertheless, ��° is well within the ��° separation of the constellation points. As shown
in �gure �.��, the constellation points are still clearly distinguishable. Indeed, a�er
demodulation, the output data is equal to the input data for the simulation times
we used.

When compared to the simulation in section �.�.�, the limited ��bit word-
width of theM������ increases the cost and spreading of the constellation points
signi�cantly. However, the results are still good enough for robust and proper track-
ing of DVB-S signals with rather extreme worst-case vehicle dynamics.

Performance �e �-element beamformerwith amatched �lter and E-CMAwere
mapped on three M������s. Beamforming requires � clock cycles on the M��-
����s, utilising � of the �� slots (with one slot being a single clock cycle on one
M������, see �gure �.��). �e low utilisation is caused by the limited work for
the third M������, which will improve for larger arrays. �e matched �lter re-
quires � clock cycles, utilising �� of the �� slots. E-CMA requires �� clock cycles
for computing the correction factor (the scalar part) and another � clock cycles
on two M������s for updating the steering vector, utilising �� of the �� slots. E-

���

�.�.
R������

F����� �.��: E-CMA cost function over time
F����� �.��: Constellation diagram of the
adaptive beamformer output

CMA is partly pipelined with the matched �lter improving utilisation with � slots.
Improving utilisation further is of low priority, however, as E-CMA is only exe-
cuted once every ��� samples or ���� clock cycles. For both the beamformer and
the matched �lter, meaning most of the time, only level � of theM������ALUs is
used. So utilisation of theM������ itself could also be better; for those operations
a simpler tile could be used. On the other hand, the beamcontrol algorithm has a
better utilisation of the M������ ALUs and requires the additional �exibility of
the M������, which pleads for a more heterogeneous tiled architecture.

�e memory requirements for the M������ are ���� ��bit words for each the
sine and complex division LUTs, and �� ��bit words for the arc-tangent LUT.�is
is about ��� of the available memory.

Designer productivity �e manual implementation for the M������ is rela-
tively complex because of the M������’s many functional units, the signal paths
between the units, and the dependencies between them. It is therefore relatively
time-consuming and error-prone. Being able to generate input signals for the
M������s with U��T� and to verify the results against it, is helpful for the im-
plementation step. �e U��T� model does not use �xed point data, therefore, it
will be useful to implement support for �xed-point data in U��T�.

�.�.�.� Flexibility

�e LEONS�Cplatformconsists of recon�gurable processors and a recon�gurable
NoC, so it is very �exible. �is �exibility is intended to be used to switch between
di�erent scenarios such as between searching using a spatial reference algorithm
(section �.�.�) and tracking using a blind reference algorithm, the latter of which
we have implemented.

���

C
��

��
��

�.
C
��
�
��
��

�

Automation Unfortunately, both themapping and implementation are amanual
process for the LEON S�C.�e M������ and the NoC do automate the manage-
ment of data streams a�er con�guration, i.e the M������ is stalled automatically
until new data arrives [���].

Scalability Because of the applied partitioning of the beamformer, the implemen-
tation scales well with the number of antennas; additional M������ tiles need to
be added, but their functionality remains the same. �e matched �lter operates
on the output of the beamformer and has a �xed complexity, so it will become
smaller compared to the beamformer for increasing number of antennas, and the
current mapping will su�ce. �e beamcontrol algorithm is more complex, but
the correction factor is a scalar operation with a �xed complexity and its result is
then distributed over the tiles to update the steering vector. As the same input data
is used for beamforming and for updating the steering vector, this nicely exploits
locality-of-reference and scales well with the number of antennas. Scaling is only
limited by the need to distribute the correction factor from a single point to the
rest of the tiled architecture. However, as E-CMA has limited complexity and is
not executed o�en, it can easily be duplicated for a better distribution.

�.� C���������

In this chapter we have applied the U��T� design �ow and framework presented
in chapters � and � to the design of a generic beamforming platform as presented
in chapter � using a tiled architecture as presented in chapter �. �is case study is
presented in three parts; �rst a simple beamformer is developed which focuses on
modelling the environment. Next, the design is extended into an adaptive beam-
former based on E-CMA for the beamcontrol algorithm, and includes feedback
and state. Finally, the design is extended to a hierarchical beamformer with multi-
stage beamforming in the analogue and digital domain and A-CMA for beamcon-
trol.

In the �rst step the speci�cation of the case study is presented. �e de�nitions
are very similar to themathematical equation from chapter �, however, at the same
time their implementation in Haskell is straightforward. As a consequence, the
speci�cation is executable. �is is applied to verify the speci�cation with plots of
the beamformer output and the radiation patterns expected from the E-CMA and
A-CMA algorithms.

�e next step is co-design; the equations from the speci�cation are used to
de�ne components representing the environment, the architecture and the appli-
cation. �e composition operators are used to combine components and for struc-
tural hierarchy. Furthermore, the environment and the analogue front-ends are
represented in the CT domain, while the AP is represented in the DT domain and
the beamforming and beamcontrol in the DF domain. �e model is gradually de-
veloped by adding QPSK modulated source signals with an RRC �lter with state,
and E-CMA for adaptive beamcontrol using feedback, followed by A-CMA and

���

�.�.
C
���������

a second feedback loop. �e U��T� models during this design step are compared
with equivalent Simulink models. For the same simulation step sizes, the execu-
tion time is at least about the same or up to � times less in U��T� in the cases pre-
sented. However, evenwith the same execution time, we always gain accuracy with
U��T�; the result of the U��T� simulations are exact, whereas Simulink introduces
inaccuracies. For example, in the DVB-S case, reducing the simulation step size in
Simulinkwith a factor �� gives an acceptable accuracy of �� (��dB SNR). InU��T�
the accuracy is limited by the machine precision of about � × ��−�� � (���dB SNR).
With a �� times smaller step size in Simulink, U��T� is up to forty times faster.

During the partitioning step, di�erent partitionings of the beamformer are ex-
plored using a model transformation that exploits the associativity of addition and
the distributivity of multiplication. As the beamcontrol algorithm is only executed
once every few hundred samples it is not partitioned.

�e mapping step assigns the processing components of the adaptive beam-
former to tiles on a tiled architecture with three recon�gurable processors that is
realised on an FPGA. Because of the small number of tiles, only an �-element beam-
former can bemapped, yet it veri�es the scalability of the beamforming application
on a tiled architecture with an implementation.

�e implementation requires four clock cycles for beamforming and �ve clock
cycles for baseband processing on two of the processors. �e third processor per-
forms a �nal addition and once every ���� clock cycles the beamcontrol algorithm
is executed, taking �� clock cycles. Since only four clock cycles are available per
sample, the implementation must be further partitioned for real-time operation.

�e results verify that theU��T� design �ow and framework can be successfully
applied up to the mapping and implementation step for the design of a generic
beamforming platform. �e performance of the framework limits simulations to a
few hundred antennas because of memory requirements, but the approach is �ex-
ible and expected to be more productive. �e mapping and implementation are
limited by the small number of tiles on available tiled architectures. Furthermore,
the implementation takes a lot of e�ort. On the other hand, the implementation
does provide scalability and is able to successfully execute an adaptive beamform-
ing application.

C������ 7
Conclusions

In this thesis we set out to advance the design of embedded systems using a model-
based design approach. Looking at the trends, such an approach is considered
crucial to deal with the increasing complexity of designing embedded systems. In
particular we have considered a larger application on a many-core architecture,
leading us to touch upon many of the trends such as requiring the modelling of
multiple-domains, the inclusion of time in themodel, and the need for an adaptive
and �exible system that is also e�cient.

We conclude that the design of future embedded systems requires support to
deal with their complexity by dividing the problem into subproblems, yet at the
same time requires support to integrate the various aspects of those subproblems.
�is integration is needed to ensure correct operations of the �nal design as well
as to improve collaboration and interaction between di�erent parts of the design.

Model-based design provides such an approach bymodellingmultiple domains
in a single model and by using model transformations. We speci�cally considered
the combination of the CT and DT domains with the DF domain. �e CT domain
is used to model the environment of a system and the analogue hardware, the DT
domain is used tomodel the digital hardware, and the DF domain is used tomodel
the so�ware. We have found few tools supporting all these domains. Even fewer
support model transformations or mathematical de�nitions of model components
to assist model transformations. Furthermore, we have found no tools supporting
the exact simulation of models with time transformations, such as time delays, or
supporting separate notions of time such as simulation time, approximation time
and local time. �ese features are important to accurately model the environment.

�e U��T� design �ow andmodelling and simulation framework does support
these aspects. U��T� provides a uni�ed perspective on time, signal and compo-
nents in multi-domain models, consisting of CT, DT and DF components. In all
domains components represent signal transformations, yet the representation of
signals di�er. CT signals are represented by functions of time in order to support

���

C
��

��
��

�.
C
��

��
��
��
��

time transformations.�is is possible because components can change the time ref-
erence of the CT signal before the function is applied to a time, thereby enabling
exact simulation of models containing such time transformations. DT signals are
represented as values, i.e from the perspective of the DT component the input is a
single value. Although this value can change over time, the DT component is not
able to in�uence this time nor should it be able to. DF signals are represented as
a list of tokens representing an update to an input channel of a data�ow process.
�is di�ers from the standard representation of data�ow models, however, this is
required to unify the DF domain with the signal representation of a time-varying
quantity as in the CT and DT domains. As a consequence, DF components take
care of managing the contents of channels and the �ring of processes. In a U��T�
model, DF components are embedded into DT components and DT components
are embedded into CT components for integrated multi-domain modelling. Fur-
thermore, components are de�ned using mathematical de�nitions. Mathematical
de�nitions facilitate model transformation by exploiting mathematical properties
such as distributivity and associativity, as well as preserving correctness.

We have identi�ed several notions of time in such models: the simulation time
(of the model), the sample time (e.g. of an ADC), the approximation time (e.g. of
an integration), the execution time (e.g. of a data�ow process), and the local time
(e.g. for a time delay). In U��T� these notions are separated, allowing the local time
of an input CT signal to be di�erent from the local time of an output CT signal to
implement e.g. a time delay. �ese notions of time do not have to match with
the simulation time, e.g. the simulation time is automatically changed to the latest
sample time, locally at the ADC component. Components that deal with changes
over time, such as integration or di�erentiation, in the general case need a solver. In
all current tools, this solver is global and uses a global approximation time step. In
U��T� a solver is locally applied for the component, enabling the designer to choose
a speci�c solver and its approximation time step, for each component individually.

Embedded systems interact with their environment, and many embedded sys-
tems perform signal processing on streaming data from the environment. As an
example application, we have discussed the application domain of phased array
beamforming applications. Beamforming is a relatively large application, in that it
is not able to run on a single processor. Phased array systems are typically used in
applications such as radar and radio astronomy. High costs have withheld their use
for consumer applications, such as satellite reception andwireless communications.
�erefore we have presented a generic beamforming platform that could enable
such systems for consumer applications by economies of scale. However, between
beamforming applications (satellite reception, radar, radio astronomy, andwireless
communications) there are large di�erences, especially in the required array size.
�us, a generic platform must be modular, scalable and �exible to support mul-
tiple applications. In addition, the beamforming application must be partitioned
for such a modular platform. A hierarchical beamformer is used to performmulti-
stage beamforming, and hybrid beamforming is used to perform the �rst stages in
the analogue domain for further cost savings. A beamforming systemmust also be
able to search and track signals-of-interest in a dynamic environment. Many search

���

and track algorithms are costly in terms of processing and as such not very suit-
able for a low-cost platform with limited resources. �erefore, we have presented
E-CMA as a low-cost tracking algorithm for PSK modulated signals. However, E-
CMA is not suitable for hierarchical beamforming because it computes a steering
vector for a single stage. �erefore A-CMA is presented that provides a steering
angle, which can be used for all stages, at the cost of a quadratic dependence on
the number of antennas instead of linear for E-CMA.

A generic beamforming platform requires scalability and �exibility, making a
tiled recon�gurable architecture a good �t, for the tiles are modular and recon-
�guration enables e�cient reuse of the hardware. Beamforming is explored on
a number of such architectures, which con�rm that tiles provide scalability and
recon�gurability provides �exibility. Yet, programming such architectures is not
easy: applications must be partitioned, the parts can not have shared state, and the
communication must be explicit. In addition, the used recon�gurable processor
requires a lot of e�ort to program, and there are only a few clock cycles per in-
put sample for the beamforming application, requiring a relatively large amount of
communication per computation. To improve usability, data�ow models are used
to represent an application for a tiled architecture, as it can represent the parts of
the application as processes, and the communication between them as channels,
making the communication explicit. Furthermore, the use of a data�ow model
takes care of synchronisation, which is very convenient in beamforming applica-
tions which have many data streams.

A design �ow has been presented, to accompany the U��T� framework, based
on model transformations. �e �rst step is the co-design step for the division of a
speci�cation to a representation of the environment, the application and the archi-
tecture. Analogue/digital co-design is used to determine which components of the
environment and the architecture tomodel in the CT domain and which in the DT
domain. Hardware/so�ware co-design is used to determine which components of
the application to model in the DT domain in hardware and which to model in
the DF domain in so�ware. �e next step is the partitioning step for the division
of the application on a tiled architecture. As such, the application is parallelised.
Mapping and code generation provide the �nal implementation.

�e U��T� framework supports this design �ow by allowing a single uni�ed
model in the CT, DT and DF domain. Model components can be domain inde-
pendent, and can thus be moved between domains. Parallelisation is supported
by (mathematical) model de�nitions using aggregate operations, such as element-
wise or reduction operations. �e mathematical de�nitions do not unnecessarily
restrict the dependencies between computations, and the aggregate operation en-
courages parallel de�nitions.

�e U��T� design �ow and modelling and simulation framework presented in
this thesis is further explored with a case study concerning the design of a generic
beamforming platform. First, a formal speci�cation is presented, which is executed
for veri�cation. Next, the speci�cation is re�ned into a multi-domain model with
components representing the environment, the architecture and the application.
�ismodel is compared to an equivalentmodel in Simulink and found to be at least

���

C
��

��
��

�.
C
��

��
��
��
��

as fast and up to �� times faster, while providing exact simulations of time delays.
�erea�er, the beamforming operation is partitioned to a hierarchical beamformer
using a model transformation, and for which di�erent granularities are explored.
�e mapping and implementation have been performed without U��T� support,
yet it veri�es the scalability of a hierarchical beamformer on a tiled architecture.

Overall, U��T� is successfully applied to the design of an embedded system. As
such, we have taken a few steps forward by providing a functional design �ow and
framework with support for multiple domains and model transformations.

�.� R������� ���������

Following the conclusions we will now address the research questions presented in
chapter � directly:

• What is a suitable design �ow for embedded systems based on a divide-and-
conquer approach?
A model-based design �ow supported by model transformations for the co-
design, partitioning and code generation steps is suitable for the design of
complex embedded systems. Such a design �ow requires support for mod-
elling the environment, the architecture and the application of an embedded
system in a uni�ed approach. Such a design �ow follows from the increas-
ing interaction of embedded systems with their environment, the need for a
tiled architecture to support scalability and the use of a divide-and-conquer
approach to manage complexity.

• What is required from a modelling and simulation framework to support this
design �ow?
A single model is required for the CT, DT and DF domains. �e integration
of these domains needs a uni�ed perspective on time, signals and compo-
nents, with support for sequential, parallel and feedback composition, as
well as support for di�erent notions of time. To support model transfor-
mations, support is needed for mathematical model de�nitions and appli-
cations that are de�ned using aggregate operations.

• Are tiled recon�gurable architectures suitable for large high-performance appli-
cations?
�e tiles provide modularity and scalability, but also require the applica-
tions to be partitioned in independent parts with explicit communication.
�e recon�gurability provides �exibility, yet programming a recon�gurable
system takes a lot of e�ort. �us, the use of a tiled recon�gurable architec-
ture requires additional e�ort over a single core fully programmable solution
(which is not feasible for such large applications), but less than a fully ded-
icated implementation. Furthermore, the use of data�ow models improves
usability by representing a partitioned application with explicit communi-
cation, providing synchronisation, and providing analysis of the model. Fi-
nally, a design �ow and modelling and simulation framework supporting
such architectures is needed, as provided in this thesis.

���

�.�.
D
���������

�.� D���������

�is thesis covers a broad range of subjects and in addition presents the design of an
embedded system all the way from speci�cation to implementation. It also com-
bines several research areas; systems engineering, signal processing applications,
computer architectures and functional programming.

�is has the advantage that we have touched upon most aspects in designing
embedded systems and are able to provide contributions at the boundaries of re-
search areas. Yet, we have not been able to discuss all topics in-depth. In particular,
the representation of the architecture in the model, including structural aspects
and cost aspects, has been limited. Furthermore, we have found that the signal pro-
cessing model, distributed concurrent applications, and mapping of applications
onto a tiled architecture are all based on data�ow, while the processor tiles are still
based on control �ow. We would have gladly discussed data�ow processors as a
recon�gurable processor for streaming application, matching very well with tiled
architectures, as we have explored in [KCR:�, KCR: ��] and [���] for example.

Finally, we have presented novel perspectives on modelling time, exact simula-
tion of time transformations, and local solvers, as well as representing and integrat-
ing signals and components in the CT, DT andDF domains.�e full consequences
of these choices in more than a single case study will have to be evaluated. For ex-
ample; are there models that can not be represented using U��T�, and what is the
numerical accuracy and stability when using multiple feedback loops and local
solvers?

�.� O������

�e design of embedded systems using model-based design and supported by a
framework like U��T� seems well positioned [��, ��, ��, ��, ��]. Several of its ad-
vantages have been presented in this thesis. Of course, there are many opportuni-
ties for future work.

Some of the work has already been mentioned during the discussion. For ex-
ample, hardware aspects of the architecture, such as hardware cost, resource costs,
timing, structure, etc. were intended to be included as meta-data in the models.
Furthermore, the use of data�ow processors as tiles would be interesting to further
explore.

For beamforming applications, the use of hierarchical hybrid arrays raises in-
teresting questions concerning the use of di�erent antenna con�gurations for sub-
arrays, and the combination of time delay based beamforming stages with phase
shi� based beamforming stages.

Concerning U��T�, there remains a lot to be done. �e problem that occurs
when feedback in the CT domain is combined with state for more e�cient simu-
lations is an important hurdle to be solved. Furthermore, we expect to be able to
integrate additional domains, such as �nite state machines or timed automata, be-
cause a CT signal can be changed to a (completely) di�erent function depending

���

C
��

��
��

�.
C
��

��
��
��
��

on the time, thereby representing a state change. Analysis of data�ow models is
currently not supported, but should be easy to add, as we can already extract a vi-
sualisation of the model and can thus also extract di�erent formats as required by
existing analysis tools.

Usability of theU��T� tool would be improved if a graphical view of themodels,
as well as a design environment, complement the textual representations. �is is
because graphical tools are intuitive to use and common in systems design tools.
However, the textual representation remains important, for example for the initial
speci�cation or for complex components.

Finally, the mapping and implementation of the design �ow should be better
supported by the framework. �ere are promising mapping tools available [��,
��] which could be integrated, or at least supported similarly to the support for
data�ow analysis tools. In addition, in theNEST project [��] there is ongoing work
enabling the execution of Haskell code on a �� core architecture, thereby greatly
simplifying the code generation part. �ere is also ongoing research to generate
hardware from de�nitions similar to the U��T� de�nitions [�], using a hardware
description language (VHDL) as intermediate. Supporting hardware generation
using this should be relatively straightforward, skipping the mapping and code
generation steps altogether.

A�������

A
Data�ow

Data�ow refers to the �ow of data as contrasted to the �ow of control as used in
(sequential) stored-program models such as a von Neumann machine. Originally
data�ow was introduced as an execution model for data�ow machines; execution
is performed by actors on the availability of abstract data elements called tokens
thereby reducing the task of explicit memory management [��, ���]. A directed
graph representation indicates the dependencies between the actors, where the
nodes of the graph represent actors and the edges represent queues of tokens. Exe-
cution of an actor is also called �ring of a node. A node can only �re if it is enabled
as determined by the enabling or �ring rule. �e �ring rule speci�es how many
tokens are required and must therefore be available for each input of the node.

Data�ow was later introduced as a useful model for signal processing known
as synchronous data�ow (SDF) [��] (also called MRDF). In this model, a node
represents functions or computations and edges represent signal paths.

�e third approach sees data�ow as a special case of a Kahn PN and is known as
a data�ow PN. In a data�ow PN, nodes represent processes and edges represent un-
bounded FIFO channels, where processes are concurrent continuously executing
functions and consume tokens from channels and produce tokens into channels. As
such, data�ow processes can be seen as mapping sequences of inputs to sequences
of outputs or functions on streams [��].

A.� T����������

Note that in each approach above the terminology is slightly di�erent. Nodes rep-
resent actors, functions or processes, where an actor performs a computation, a
function is a computation and a process is the action of running a computation.
Similarly, edges represent availability of data, signal paths or channels, where chan-
nels represent both the data as the signal path. However, these terminologies are

���

A
��
��

��
�
A
.
D
��
��

��
�

o�en used interchangeably. Lee and Matsikoudis [��] argue and show that data-
�ow PNs are a generalisation as they can describe SDF and data�ow execution as
data�ow PNs.

A.� D������� �����

A data�owmodel or data�ow process network is a graph of nodes (processes) con-
nected by edges (channels); data tokens are processed (computed) inside nodes and
sent (communicated) from one node to another through the edges. �us, nodes
represent computation and edges represent communication. Processes consume
and produce tokens by reading from and writing to channels, where tokens are
atomic data elements. As processes are independent, they may not in�uence each
other besides the explicit input and outputs, i.e. data�ow processes must be side-
e�ect-free. Channels are unbounded FIFO token containers used for interaction
between processes. Channels are of unbounded capacity, but bu�ers between pro-
cesses are modelled by two channels in opposite directions; one models the data to
be communicated and the so-called back-edge models empty space in the bu�er.
Only a single process is allowed to read from and write to a channel.

A process may consume and produce several tokens at a time; when there are
not enough tokens available on the input edges of a node, that node will not ex-
ecute (�re). �e condition that enables �ring is called the �ring rule. Note that
executions can overlap: if enough tokens are available to �re, the process directly
executes even if the process is already executing.

�e number of tokens consumed and produced per �ring (the rates) can be
variable. A SRDF graph always consumes and produces a single token, a MRDF
graph has a �xed token rate at each edge. In a CSDF graph, the token rates cycle
through a number of phases with �xed token rates (possibly zero) at each phase.
VPDF graphs have a limited form of data-dependent token rates [���], where the to-
ken rate is determined by a parameter from an input channel. Finally, DDF graphs
have fully data-dependent token rates.

A.� D������� ��������

As execution depends on availability of tokens, cycles in the graph can introduce
deadlock (where the processes are waiting on each other). In general (forDDF) it is
undecidable if a graph will deadlock [��]. In addition, if more tokens are produced
than consumed for a channel tokens accumulate requiring in�nite bu�ers. A back-
edge limits the bu�er size required, but how much bu�er space is needed? Too
much space leaves part of the bu�er unused, but too little space results in dead-
lock. For restricted data�ow models such as SDF, where the number of tokens
consumed and produced is not data-dependent and thus unpredictable, deadlock
freedom can be proven and theminimum bu�er sizes required for this can be com-
puted [���]. Furthermore, by assigning an execution time to each �ring of a process,
the latency and throughput of the model can be calculated.

���

A
.�.

D
�������

���������

Data�ow models have no notion of time, only ordering. For metrics such as
throughput and latency to make sense, and allow them to be determined by the
analysis techniques, processes in the data�ow model are annotated with execu-
tion time. Consumption and production of tokens is assumed instantaneous in
the model; the time that consumption and production takes in the “real world” is
absorbed by the execution time. In practice, data enters the application via one or
more source processes (e.g., an ADC that samples data at �xed time intervals) and
leaves the application via one or more sink processes (e.g., a DAC).�e data rates
for these sources and sinks are �xed and therefore, they determine the application’s
performance constraints.

For the analysis to be valid, the computations clustered as a single process must
be side-e�ect free and the (worst-case) execution times must be conservative (real
execution times should not be larger than the worst-case estimate) [��]. Data�ow
processes and models are monotonic (order-preserving), causal (depend only on
previous and current inputs) and deterministic (same output results for the same
inputs, independent of the �ring order) [��].

A.� D������� ���������

�ere are several execution models for the DF domain (e.g. concurrent processes,
compilation of data�ow graphs, tagged tokenmodel) [��]. �e most common is to
implement data�ow processes as concurrent processes with static scheduling and
implement the �ring rules as a sequence of “read”, “execute” and “write” phases,
although there is no clear winner [��, ��, ��, ��, ���].

For the non-data-dependent data�ow models (SRDF, MRDF and CSDF), a
static execution schedule can be determined at design time. �is eliminates the
need for a scheduler when executing on a single processing resource. All data�ow
models have self-timed execution. �erefore there is no need for global control of
the execution.

A.� P���������

Data�ow models have a number of useful properties. Firstly, tokens in channels
must remain ordered and no tokens can be lost.

Secondly, in data�ow di�erent data rates are decoupled. A process can only
execute if all required input tokens are available, otherwise it will block. �erefore,
it is not important when and in what order � the tokens arrive; as soon as the last
input required for �ring is available the process executes thereby consuming the
inputs. If a�er �ring enough tokens are available to enable the process once again,
it can execute straight away concurrently in the model. To limit the number of
concurrent executions of a process self-edges are used, i.e. channels that loop back
to the process itself. As the self-edge becomes an extra enabling condition, the next

��is refers to the order of arrival of tokens over the (empty) input channels, not to the order of
tokens in a channel

���

A
��
��

��
�
A
.
D
��
��

��
�

execution of a process can only start a�er a previous execution has �nished thereby
producing one or more tokens on the self-edge.

�irdly, because tokens are only consumed when all required tokens are avail-
able to the process, this ensures synchronisation of the processes’ inputs. As said,
data�ow assumes unbounded FIFO channels, but bu�ers are modelled with back-
edges representing bu�er space. A process writing to this bu�er can only execute
if a “space” token is available. �is ensures no data is overwritten and lost. Assume
process � produces into a bu�er and process � consumes from it. If the execution
of process � takes longer than that of process �, tokens from process � accumulate
in the bu�er until it is full, causing process � to wait until process � produces new
“space” tokens. �is is called back-pressure and ensures synchronisation of compu-
tations.

Finally, any process that is enabled can execute, independent from other pro-
cesses. �erefore, processes that are waiting for input do not prevent other pro-
cesses from executing, making data�ow latency tolerant.

A������� B
�e M������

�e M������ is an example of a coarse-grained recon�gurable processor [��] de-
veloped by Recore Systems [��]. It is optimised for signal processing operations.
Several core operations, called kernels, for signal processing applications have been
implemented on theM������; signal processing operations such as FIR�lters and
FFTs [��] and a number of baseband processing and wireless communication ker-
nels such as CDMA and OFDM receivers, Viterbi and Turbo decoders [��] and
Reed-Solomon decoding [KCR:�].

Wewill �rst present an overview of the processor landscape in order to position
coarse-grained recon�gurable processors. �en we will discuss the M������ ar-
chitecture in detail. Finally, we will present the implementations of three relatively
complex (compared to the capabilities of the M������) operations: a coordinate
transformation for determining the magnitude and phase of a complex number
using CORDIC, computation of the sine function using a LUT, and computing a
complex division.

B.� P�������� ���������

Processing hardware can be divided into �ve groups with increasing e�ciency, but
decreasing�exibility [��]: general purpose processors (GPPs), application-domain
optimised processors, coarse-grained recon�gurable processors, �ne-grained re-
con�gurable processors, and ASICs.

A GPP is designed for general use and therefore o�ers the most �exibility, but
has limited parallelism. Since operations are done sequentially, high clock speeds
are needed to give good performance, resulting in lower energy e�ciency. Further-
more, they implement ALUs that can compute a large variety of di�erent opera-
tions, improving �exibility but requiring more control and energy overhead.

A digital signal processor (DSP) or a graphics processing unit (GPU) can be
seen as a GPP optimised for an application domain, signal processing and graph-

���

A
��
��

��
�
B.

T�
�
M
��

��
��

ics respectively. �erefore they provide higher performance and energy e�ciency
for those domains, while still providingmuch of the �exibility of a GPP. DSPs have
support for complex numbers, saturated computations, MACs operations and FFT
butter�y operations for example, all of which are useful for the beamforming appli-
cation. Another large advantage of GPPs, DSPs and GPUs is the support for higher
level programming languages and tools.

Coarse-grained recon�gurable hardware is designed for word level algorithms.
�ese are the same algorithms as the DSP is intended for, but instead of running
a program, the hardware is con�gured to perform a certain task. �is implies that
signal paths are relatively stable improving energy e�ciency. As expected, its �exi-
bility comes from the ability to recon�gure the hardware for a particular algorithm
within the hardware’s application domain. Because the functional blocks are larger
compared to �ne-grained recon�gurable hardware, the overhead is less and this
increases its power e�ciency.

Fine-grained recon�gurable hardware, such as FPGAs, uses look-up tables to
implement functionality and an extensive con�gurable interconnect between them.
Con�gurability is therefore at the bit-level. Since the design of a �ne-grained re-
con�gurable hardware device is very regular, it can be highly optimised for per-
formance.However, the user is essentially specifying hardware, that is synthesised
to con�gurations, therefore requiring more e�ort [���]. Furthermore, recon�gura-
tion times are in the milli-second to second range [���].

If designed properly, an ASIC is the most e�cient. It is e�cient because the
hardware is designed speci�cally for certain functionality and is not changeable.
�erefore, the �exibility of an ASIC is limited by design.

B.� T��M������ ���������

�e M������ processor is an example of a coarse-grained recon�gurable proces-
sor intended for signal processing operations. As such, it nicely balances (energy)
e�ciency versus �exibility for this application domain [��].

�eM������ is shown in �gure B.� and consists of three parts; the processing
part array (PPA), the (instruction) decoders and the sequencer. Furthermore, it is
connected to a communication and con�guration unit (CCU) [���]. Its template
based design allows for customisation of architectural properties. �e default de-
sign has a data pathwidth of ��bit, a targeted clock frequency of ���MHz for ��nm
technology, � parallel ALUs and �� local memories of ����words. Its silicon area is
approximately �mm� and its power consumption is approximately ���µW�MHz.

Sequencer �e sequencer stores and controls a sequence of instructions, i.e. a
program or kernel. A program counter is used for the program �ow and is directly
connected to a static random-access memory (SRAM) containing the program to
select the next instruction to be executed. Hence, an instruction can be fetched
immediately from local memory and is not a�ected by a typical memory hierarchy

���

B.�.
T��

M
������

���������

PPA
M�� M��

ALU�

A B C D

OUT� OUT�

E

M�� M��

ALU�

A B C D

OUT� OUT�

W E

M�� M��

ALU�

A B C D

OUT� OUT�

W E

M�� M��

ALU�

A B C D

OUT� OUT�

W E

M�� M��

ALU�

A B C D

OUT� OUT�

W

Memory
decoder

Inter-
connect
decoder

Register
decoder

ALU
decoder

Sequencer

Communication and con�guration unit

F����� B.�: M������

with caches in conventional architectures, in which access latency is unpredictable.
As there is no interaction between the data path and the instruction program, the
kernel execution is fully deterministic.

Instruction decoders Instructions from the sequencer are decoded by the in-
struction decoders. A separate decoder is used for di�erent parts of the proces-
sors; the memories, the interconnect, the registers and the ALUs. Each decoder
contains a subset of all possible control signal combinations for that part. Fields in
the sequencer instruction select an entry in each decoder, thereby severely limiting
the needed control signals from instructions. Furthermore, decoder entries can be
shared between instructions. Together this enables e�cient storage of kernels and
better energy e�ciency as the number of changing control signals is reduced.

Processing part array Processing is performed using � processing parts. �e
instruction decoders decompress instructions into control signals for the process-
ing parts. Each processing part contains an ALU, a register bank (� deep for each
of the � inputs), and � local memories. �ey are connected with a large crossbar
consisting of �� global buses that provides a high bandwidth to �� memory units.
Each ALU can be connected to � of the memories via a local interconnect or to
the � other memories via the global buses. In addition, each ALU can receive an
intermediate value from its right neighbour ALU via an east-west connection. Us-
ing these � inputs, multiple operations can be executed simultaneously and from
each ALU at most � results can be generated (one to the west output and two to the
bottom outputs, which are connected to the interconnect).

���

A
��
��

��
�
B.

T�
�
M
��

��
��

function unit 1 function unit 2

function unit 3 function unit 4
dec

A B C D

mX

A BZ1A

mY

C DZ1BSB

×

+
Z1A Z1B B D east

west

SB

mB

B D

+ −

mO1 mO2

Z1A Z1B Z1A Z1B

o1 o2

ZA

Level �

Level �

Level �

F����� B.�: Structure of one M������ ALU

Each memory has an address generation unit (AGU) to generate common ad-
dressing patterns such as linear addressing, stride-by-n (i.e., the address is incre-
mented by n a�er each read orwrite operation), bit reversing (an output reordering
technique that is typically used for FFT algorithms) and modulo counting (e.g. for
creating circular bu�ers). �is relieves the ALUs from the calculation of memory
addresses making its instructions muchmore regular and enabling the address cal-
culations to be performed in parallel with the data processing operations.

Figure B.� shows the internal structure of one ALU. EachALU consists of three
levels. �e �rst level contains four function units capable of logical functions and
basic arithmetic. �e two topmost function units are connected to four register
banks providing inputs. �e lower two function units are connected to the output
of the units above. Each function unit generates status �ags to indicate the occur-
rence of over�ow, a negative result or whether its result equals zero. �ese status
�ags may be used by the sequencer, for example for conditional jumps. �e second
level contains amultiplier followed by an adder/subtracter forMAC operations. Ei-
ther the outputs of the �rst level or the register bank can be used as input for the
multiplier. �e results or the same inputs are used as the le� operand of the adder.
In addition, the right operand for the adder can be statically or dynamically (de-
pending on the value of the status bit SB) selected from inputs B,D, Z1A and Z1B.

���

B.�.
K
��������

����
�����

��
���

M
������

Also note the east input that can be selected for the adder as well as thewest output
of the result. �e third level contains a butter�y unit for FFT operations.

�e ALU outputs are selected from the outputs of each level. Almost all arith-
metic operations in the ALUs can be executed in either integer modus (i.e., they
operate on the �� rightmost bits) or in �.�� �xed point modus (i.e. the le�most bit
is used as sign bit whereas the other bits contain the �xed point fraction). In order
to avoid over�ow, the intermediate values can be saturated. Since the ALU is not
pipelined, the entire operation from the register �le inputs to the ALU outputs can
be done within one clock cycle. Each ALU, memory or entire processing part can
be turned o� when not used, saving energy.

Communication and con�guration unit �e CCU is responsible for control,
con�guration, memory initialisation, synchronisation as well as interfacing with
the NoC. �e CCU provides a con�guration interface for temporally halting and
recon�guring the M������ and starting a kernel. Furthermore it provides two
mechanisms for communication: block mode and streaming mode communica-
tion. In the block mode, the input samples are stored in the memories, and re-
trieved again when execution has �nished, by means of a direct memory access
(DMA) transfer by the CCU. In streaming mode, a program con�gured in the
M������ can generate a read request for reading data from any input NoC con-
nection or generate a write request for writing data to any output NoC connection.
While waiting for a read or write request the M������ can continue processing,
overlapping computation and communication.

B.� K������ ����������� �� ���M������

In this section, we will present three implementations of kernels [���] which are
used for the case study; a coordinate transformation, sine computation and com-
plex division.

Coordinate transformation A coordinate transformation from Cartesian coor-
dinates �u = (x , y) to polar coordinates (r, θ) is de�ned as:

r = ��u� =
�

x� + y�

θ =∠�u = arctan
y
x

However, the square-root and arc-tangent are computationally expensive opera-
tions which are not supported in hardware on the M������. �ese operations
can be implemented using LUTs. However, full ��bit accuracy requires ��� = ��k
memory locations, while the M������ only has �� ⋅ ��� = ��k local memory avail-
able. A more e�cient approach is the CORDIC algorithm [���], which iteratively
approximates the magnitude and phase using only shi� and add operations. Us-
ing CORDIC, or generalisations to the algorithm [���], also other operations, such
as the sine and division operation among others, can be approximated iteratively.
However, we will use di�erent implementations for those operations.

���

A
��
��

��
�
B.

T�
�
M
��

��
��

�e CORDIC equations are:

xi+� = xi − yi ⋅ di ⋅ �-i

yi+� = yi + xi ⋅ di ⋅ �-i

zi+� = zi − di ⋅ tan-� ��-i�
where

di = +� if yi < �
di = -� otherwise

In the limit this converges to:

xn = An

�

x�� + y��
yn = �

zn = z� + arctan�
y�
x�
�

An =
n−�
�
i=�
√

� + �-�i

such that
r =

xn
An

θ = zn

Each xi+�, yi+� and zi+� equation is implemented on a separate ALU.�e shi�
operation (�-i) and the optional negation (di) based on yi are implemented using
level � of the ALUs. �e addition or subtraction is implemented using level �. �is
implementation is shown in �gure B.�. Using this implementation, one CORDIC
iteration can be computed per clock cycle.

�e part of the equation that is multiplied by di , i.e. yi ⋅ �-� for the calcula-
tion of xi , is always negated. �en based on di either the negated or non-negated
value is chosen. �e decision variable di is generated as a status bit of one of the
functional units, which indicates if the value it contains (yi in this case) is nega-
tive or not. In case of xi+� this is a by-product of the shi�-operation, otherwise
yi is passed to the function unit explicitly. As mentioned, the arc-tangent opera-
tion is not available. �erefore it is provided provided by a LUT. However, with
CORDIC only a limited number of arc-tangents need to be stored in memory, one
for each iteration. As each iteration adds one bit of accuracy to the result and the
M������ uses �� -bit, a maximum of �� iterations and thus ��memory locations
are required. However, due to the limited word-width in combination with the bit-
shi� operation, the smallest error is already reached a�er �� iterations [���]. Note
that the CORDIC equations are only valid for angles between - π� and

π
� . For larger

angles an initial rotation is performed with a similar set of equations [���], thus
requiring one additional iteration. In addition, the gain An of the CORDIC algo-
rithm must be corrected with a multiplication with a constant requiring another
clock cycle, giving a total of �� clock cycles again.

Sine computation �e CORDIC algorithm can also be used to calculate the sine
function [���], requiring another �� clock cycles for �� iterations of CORDIC. An
implementation as a LUT requires only � clock cycles; one for setting the mem-
ory address and one for retrieving the value. However, with ��bit memories, the
accuracy of the sine function is limited to ��bit.

���

B.�.
K
��������

����
�����

��
���

M
������

A B C D

yi i xi

>>

neg

� �

-

o1

xi+�

A B C D

xi i yi

>> < �

neg

� �

+

o1

yi+�

A B C D

tan−� ��−i� yi zi

< �

neg

� �

-

o1

zi+�ALU 1 ALU 2 ALU 3

F����� B.�: Implementation of the CORDIC algorithm

Complex division Again the CORDIC algorithm can be used for division [���],
at the cost of �� clock cycles. For a complex division another generalisation is avail-
able [�], which uses complex valued decision variables and additional logarithmic
LUTs. We estimate it to take � clock cycles per iteration and �.� times as much
memory [�] to implement.

Using themultipliers of theM������, amore direct implementation is chosen.
Complex division is de�ned as:

�u
�v
=
a + jb
c + jd

=
ac + bd + j
c� + d� + j

bc − ad
c� + d� =

ac + bd
��v��

+ j
bc − ad
��v��

�e computation of the two nominator parts requires fourmultiplications, an addi-
tion and a subtraction. �e nominator is implemented using level � of �ALUs and
the east-west connections. �e computation of the denominator ��v�� requires two
multiplications and an addition. �e two divisions are implemented by replacing
them with multiplication and using a LUT for the multiplication factor ��v� � .

Using �.�� �xed-point values, however, means that with ��v�� in the range of
[� . . . ��, ���v�� is in the range of �� . . .∞�, which cannot be represented in a �.�� �xed
point notation. �erefore, a scale factor µ must be included in the LUT, i.e. the
LUT implements µ��v�� . For example, for µ = ����� the range of µ��v�� is ��.����� . . .∞�.
For this range, values of ��v�� ≤ ����� �⇒ ��v� <

�
����� (≈ �.��) are saturated to �.

�e LUT operation takes two clock cycles, but in the �rst clock cycle the de-
nominator is already computed, which is then multiplied with the result from the
LUT in the second clock cycle, giving a total of two clock cycles for the complex
division.

Acronyms

�D �-dimensional
�D �-dimensional
�D �-dimensional

A-CMA angular CMA
ADC analogue-to-digital converter
AGU address generation unit
AHB advanced high-performance bus
ALU arithmetic logic unit
AP antenna processing
ASIC application speci�c integrated circuit

BB baseband
BC beamcontrol
BF beamforming
BS beamsteering

CCU communication and con�guration unit
CMA constant modulus algorithm
CORDIC coordinate rotation digital computer
CSDF cyclo-static data�ow
CT continuous-time

DAC digital-to-analogue converter
DDF dynamic data�ow
DE discrete event
DF data�ow
DMA direct memory access
DoA direction of arrival
DSP digital signal processing
DSP digital signal processor
DT discrete-time
DVB-S digital video broadcast for satellite

E-CMA extended CMA
EDSL embedded domain speci�c language
ESPRIT estimation of signal parameters by rotational invariance techniques

FFT fast Fourier transform
FIFO �rst-in �rst-out
FIR �nite impulse response
FPGA �eld-programmable gate array

���

A
��

��
��

�

FRP functional reactive programming
GPP general purpose processor
GPU graphics processing unit
GUI graphical user interface
HDL hardware description language
HPBW half-power beamwidth
IC integrated circuit
IF intermediate frequency
INBW inter-null beamwidth
LO local oscillator
LOFAR low frequency array
LPT linear phase taper
LUT lookup table
MAC multiply-accumulate
MBiS multiple boards in a system
MCoB multiple chips on a board
MIMO multiple-input multiple-output
ML maximum likelihood
MPSoC multiprocessor system-on-chip
MRDF multi-rate data�ow
MUSIC multiple signal classi�cation
NoC network-on-chip
ODE ordinary di�erential equation
ops operations per second
PN process network
PPA processing part array
PS phase shi�
PSK phase-shi� keying
QAM quadrature amplitude modulation
QPSK quadrature phase-shi� keying
RF radio frequency
RRC root-raised-cosine
SDF synchronous data�ow
SDR so�ware-de�ned radio
SNR signal-to-noise ratio
SoC system-on-chip
SR synchronous/reactive
SRAM static random-access memory
SRDF single-rate data�ow
TD time delay
ULA uniform linear array
VLIW very long instruction word
VPDF variable-rate phased data�ow
ZOH zero-order-hold

Bibliography

[�] Haskell �� Language and Libraries: �e Revised Report. Journal of Functional Pro-
gramming, ��(�), January ����.

[�] Aero�ex Gaisler. �e LEON� processor. URL http://www.gaisler.com.

[�] Ben Allen and Mohammad Ghavami. Adaptive Array Systems, Fundamentals and
Applications. Wiley, May ����. ISBN ���-�-���-�����-�.

[�] Apple-CORE consortium. Architecture Paradigms and Programming Languages for
E�cient programming of multiple CORES (Apple-Core) project. URL http://www.
apple-core.info/.

[�] Krste Asanovic et al. �e Landscape of Parallel Computing Research: A View from
Berkeley. Technical Report UCB/EECS-����-���, December ����.

[�] Christiaan Baaij, Mathijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards.
CλaSH: Structural Descriptions of Synchronous Hardware Using Haskell. In Digital
System Design: Architectures, Methods and Tools (DSD ����), ��th Euromicro Confer-
ence on, pages ���–���, September ����.

[�] John Backus. Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs. Communications of the ACM, ��(�):���–���,
August ����. DOI ��.����/������.������.

[�] Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller. BKM: a new hardware
algorithm for complex elementary functions. Computers, IEEE Transactions on, ��
(�):���–���, August ����.

[�] Arya Behzad. Radio Design for MIMO Systems with an Emphasis on IEEE ���.��n.
In Solid-State Circuits Conference (ISSCC ����), IEEE International, ����. Tutorial.

[��] Gérard Berry and Georges Gonthier. �e ESTEREL synchronous programming lan-
guage: design, semantics, implementation. Science of computer programming, ��(�):
��–���, November ����. DOI ��.����/����-����(��)�����-V.

[��] Tjerk Bijlsma. Automatic parallelization of nested loop programs (for non-manifest real-
time stream processing applications). PhD thesis, University of Twente, July ����. ISBN
���-��-���-����-�. DOI ��.����/�.�������������.

[��] Tjerk Bijlsma, Marco J. G. Bekooij, Piere G. Jansen, and Gerard J. M. Smit. Commu-
nication between Nested Loop Programs via Circular Bu�ers in an Embedded Mul-
tiprocessor System. In So�ware & Compilers for Embedded Systems (SCOPES ����),
��th International Workshop on, pages ��–��. http://eprints.eemcs.utwente.nl/�����/,
March ����. ISBN not assigned.

[��] Benjamin S. Blanchard andWolter J. Fabrycky. Systems Engineering andAnalysis. Pren-
tice Hall, �rd edition, ����. ISBN ���-�-����-����-�.

http://www.gaisler.com
http://www.apple-core.info/
http://www.apple-core.info/
http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.3990/1.9789036531733

���

B�
��
��
��

��
��

[��] Koen C. H. Blom. DVB-S signal tracking techniques for mobile phased arrays. Master’s
thesis, University of Twente, December ����.

[��] Gerard Bos. Radio astronomy signal processing on a tiled recon�gurable architecture.
Master’s thesis, University of Twente, July ����.

[��] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, �nd edition, October ����. ISBN ���-�-����-����-
�.

[��] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Sangiovanni-
Vincentelli. Languages and Tools for Hybrid Systems Design. Foundations and Trends
in Electronic Design Automation, �(�/�):�–���, June ����. DOI ��.����/����������.

[��] Paul Caspi andMarc Pouzet. Lucid Synchrone: une extension fonctionnelle de Lustre.
Journées Francophones des Langages Applicatifs (JFLA), February ����.

[��] Antony Courtney and Conal Elliott. Genuinely Functional User Interfaces. In ACM
SIGPLAN Haskell Workshop (HW’����), pages ��–��, September ����.

[��] CRISP consortium. Cutting Edge Recon�gurable ICs for Stream Processing (CRISP)
project. URL http://www.crisp-project.eu/.

[��] Marco de Vos. LOFAR: the �rst of a new generation of radio telescopes. In Acoustics,
Speech, and Signal Processing (ICASSP’��), IEEE International Conference on, pages
���–���, March ����. DOI ��.����/ICASSP.����.�������.

[��] Marco de Vos, André W. Gunst, and Ronald Nijboer. �e LOFAR Telescope: System
architecture and signal processing. Proceedings of the IEEE, ��(�):����–����, August
����. DOI ��.����/JPROC.����.�������.

[��] Peter J. Denning. �e locality principle. Communications of the ACM, ��(�):��–��,
July ����. DOI ��.����/�������.�������.

[��] Johan Eker et al. Taming heterogeneity - the Ptolemy approach. Proceedings of the
IEEE, ��(�):���–���, January ����. DOI ��.����/JPROC.����.������.

[��] Conal Elliott. Functional Implementations of Continuous Modeled Animation. In
Principles of Declarative Programming (PLILP’��/ALP’��), ��th International Sympo-
sium on, pages ���–���. Springer, July ����.

[��] Conal Elliott and Paul Hudak. Functional Reactive Animation. In Functional pro-
gramming (ICFP ’��), �nd ACM SIGPLAN international conference on, pages ���–���.
ACM, August ����. ISBN �-�����-���-�. DOI ��.����/������.������.

[��] Cagkan Erbas, Andy D. Pimentel, Mark �ompson, and Simon Polstra. A frame-
work for system-level modeling and simulation of embedded systems architec-
tures. EURASIP Journal on Embedded Systems, ����(�), January ����. DOI
��.����/����/�����.

[��] ETSI. Digital video broadcasting (DVB); framing structure, channel coding andmod-
ulation for the ��/��GHz satellite services. Technical Report ETSI EN ��� ��� (V�.�.�),
August ����.

[��] ETSI. Digital Video Broadcasting (DVB): Second generation framing structure, chan-
nel coding and modulation system for Broadcasting. Technical Report ETSI EN ���
��� V�.�.�, August ����.

http://dx.doi.org/10.1561/1000000001
http://www.crisp-project.eu/
http://dx.doi.org/10.1109/ICASSP.2005.1416441
http://dx.doi.org/10.1109/JPROC.2009.2020509
http://dx.doi.org/10.1145/1070838.1070856
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1145/258948.258973
http://dx.doi.org/10.1155/2007/82123
http://dx.doi.org/10.1155/2007/82123

���

B�����������

[��] �omas Huining Feng and Edward A. Lee. ScalableModels UsingModel Transforma-
tion. InModel Based Architecting and Construction of Embedded Systems (ACESMB),
�st International Workshop on. EECS Department, University of California, Berkeley,
September ����.

[��] John G. F. Francis. �e QR transformation. �e Computer Journal, �(�):���, ����.

[��] Peter Fritzson and Vadim Engelson. Modelica - AUni�ed Object-Oriented Language
for SystemModeling and Simulation. In Eric Jul, editor, ECOOP’�� - Object-Oriented
Programming. Springer, ����. DOI ��.����/BFb�������.

[��] Lal Chand Godara. Smart antennas. CRC Press, January ����. ISBN ���-�-����-
����-�.

[��] Dominique N. Godard. Self-recovering equalization and carrier tracking in two-
dimensional data communication systems. Communications, IEEE Transactions on,
��(��):����–����, November ����. DOI ��.����/TCOM.����.�������.

[��] Christoph Grimm, Martin Barnasconi, Alain Vachoux, and Karsten Einwich. An
Introduction to Modeling Embedded Analog/Mixed-Signal Systems using SystemC
AMS Extensions. Technical report, June ����.

[��] AndréW. Gunst and GideonW. Kant. Signal Transport and Processing at the LOFAR
Remote Stations. In ��th Union Radio-Scienti�que Internationale General Assembly
(URSI ����), October ����.

[��] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. �e syn-
chronous data �ow programming language LUSTRE. Proceedings of the IEEE, ��(�):
����–����, September ����. DOI ��.����/�.�����.

[��] Robert C. Hansen. Phased Array Antennas. Wiley, January ����. ISBN ���-�-����-
����-�.

[��] Andreas Hansson. A composable and predictable on-chip interconnect. PhD thesis,
Technische Universiteit Eindhoven, June ����. ISBN ���-��–���-����-�.

[��] Simon Haykin. An introduction to analog and digital communications. Wiley, ����.
ISBN ���-�-���-�����-�.

[��] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, �th edition, September ����. ISBN ���-�-��-������-
�.

[��] �omas A. Henzinger and Joseph Sifakis. �e Embedded Systems Design Challenge.
In Formal Methods (FM ����), ��th International Symposium on, pages �–��. Springer,
August ����.

[��] Paul M. Heysters. Coarse-Grained Recon�gurable Processors - Flexibility meets E�-
ciency. PhD thesis, University of Twente, September ����. ISBN ���-�-���-�����-�.

[��] Paul M. Heysters and Gerard J. M. Smit. Mapping of DSP Algorithms on the
Montium Architecture. In Parallel and Distributed Processing Symposium (RAW
����), ��th IEEE International. http://eprints.eemcs.utwente.nl/����/, April ����. DOI
��.����/IPDPS.����.�������.

[��] PhilipK. F.Hölzenspies.On run-time exploitation of concurrency. PhD thesis, Univsity
of Twente, April ����. ISBN ���-��-���-����-�. DOI ��.����/�.�������������.

http://dx.doi.org/10.1007/BFb0054087
http://dx.doi.org/10.1109/TCOM.1980.1094608
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/IPDPS.2003.1213333
http://dx.doi.org/10.1109/IPDPS.2003.1213333
http://dx.doi.org/10.3990/1.9789036530217

���

B�
��
��
��

��
��

[��] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots,
and Functional Reactive Programming. In Advanced Functional Programming, pages
���–���. Springer, ����. ISBN ���-�-���-�����-�. DOI ��.����/���-�-���-�����-�_�.

[��] Graham Hutton. Programming in Haskell. Cambridge University Press, January ����.
ISBN ���-�-����-����-�.

[��] Axel Jantsch. Modeling Embedded Systems and SoCs: Concurrency and Time inModels
of Computation. Morgan Kaufmann, June ����. ISBN ���-�-�����-���-�.

[��] Eric A. M. Klumperink, Bram Nauta, André B. J. Kokkeler, and Gerard J. M. Smit.
CMOS Beamforming Techniques STW project proposal. Technical report, ����.

[��] Marco J. Kruijswijk. Hierarchical wideband beamforming using �xed weights. Master’s
thesis, University of Twente, June ����.

[��] Timo I. Laakso, Vesa Välimäki, Matti Karjalainen, and Unto K. Laine. Splitting the
unit delay - Tools for fractional delay �lter design. IEEE Signal Processing Magazine,
��(�):��–��, January ����.

[��] Paul Le Guernic,�ierry Gautier, Michel Le Borgne, and Claude Le Maire. Program-
ming real-time applications with SIGNAL. Proceedings of the IEEE, ��(�):����–����,
September ����. DOI ��.����/�.�����.

[��] Edward A. Lee. Cyber Physical Systems: Design Challenges. In Object Oriented
Real-Time Distributed Computing (ISORC ����), ��th IEEE International Symposium
on, pages ���–���. IEEE, May ����. DOI ��.����/ISORC.����.��.

[��] Edward A. Lee. Computing Needs Time. Communications of the ACM, ��(�):��–��,
May ����. DOI ��.����/�������.�������.

[��] Edward A. Lee and Ele�herios Matsikoudis. �e Semantics of Data�ow with Firing.
In From Semantics to Computer Science. Cambridge University Press, September ����.
ISBN ���-�-����-����-�.

[��] Edward A. Lee and David G. Messerchmitt. Synchronous Data �ow. Proceedings of
the IEEE, ��(�):����–����, September ����. DOI ��.����/PROC.����.�����.

[��] Edward A. Lee and�omas M. Parks. Data�ow process networks. Proceedings of the
IEEE, ��(�):���–���, May ����. DOI ��.����/�.������.

[��] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. A Framework for Comparing
Models of Computation. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, ��(��):����–����, December ����. DOI ��.����/��.������.

[��] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. ����. ISBN ���-�-���-�����-�.

[��] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In Embedded So�ware
(EMSOFT’��), �th ACM & IEEE International Conference on, pages ���–���, October
����. DOI ��.����/�������.�������.

[��] MapleSo�. MapleSim. URL http://www.maplesoft.com/products/
maplesim/.

[��] Conor McBride and Ross Paterson. Functional Pearl: Applicative program-
ming with e�ects. Journal of Functional Programming, ��(�):�–��, ����. DOI
��.����/S����������������.

http://dx.doi.org/10.1007/978-3-540-44833-4_6
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1145/1506409.1506426
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/43.736561
http://dx.doi.org/10.1145/1289927.1289949
http://www.maplesoft.com/products/maplesim/
http://www.maplesoft.com/products/maplesim/
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326

���

B�����������

[��] Wolfgang Mueller, Alberto Rosti, Sara Bocchio, Elvinia Riccobene, Patrizia Scan-
durra, Wim Dehaene, and Yves Vanderperren. UML for ESL design: basic princi-
ples, tools, and applications. In Computer-Aided Design (ICCAD ����), IEEE/ACM
International Conference on, pages ��–��. ACM, November ����. DOI ��.����/IC-
CAD.����.������.

[��] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. Advances in the data�ow com-
putational model. Parallel Computing, ��(��-��):����–����, December ����. DOI
��.����/S����-����(��)�����-�.

[��] National Instruments. NI LabVIEW - Improving the Productivity of Engineers and
Scientists. URL http://www.ni.com/labview/.

[��] Paul A. Nelson and Stephen J. Elliott. Active Control of Sound. Academic Press, June
����. ISBN ���-�-���-�����-�.

[��] NEST consortium. Netherlands Streaming (NEST) project. URL http://www.
nest-consortium.nl/.

[��] Gabriela Nicolescu and Pieter J. Mosterman. Model-Based Design for Embedded Sys-
tems. CRC Press, November ����. ISBN ���-�-����-����-�.

[��] Hristo Nikolov et al. Daedalus: toward composable multimedia MP-SoC design. In
Design Automation Conference (DAC’��), ��th annual, pages ���–���. ACM, June
����. ISBN ���-�-�����-���-�. DOI ��.����/�������.�������.

[��] Object Management Group, Inc. (OMG). OMG Systems Modeling Language (OMG
SysML). Technical Report Version �.�, November ����.

[��] OMG Architecture Board ORMSC. Model Driven Architecture (MDA). Technical
Report ormsc/����-��-��, July ����.

[��] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly
Media, November ����. ISBN ���-�-����-����-�.

[��] Ross Paterson. Arrows and computation. In�e Fun of Programming, pages ���–���.
Palgrave Macmillan, March ����. ISBN ���-�-����-����-�.

[��] Arogyaswami J. Paulraj, Richard H. Roy, and �omas Kailath. A subspace rotation
approach to signal parameter estimation. Proceedings of the IEEE, ��(�):����–����,
July ����. DOI ��.����/PROC.����.�����.

[��] John Peterson, Gregory D. Hager, and Paul Hudak. A language for declarative robotic
programming. In Robotics and Automation, IEEE International Conference on, pages
����–����. IEEE, May ����. DOI ��.����/ROBOT.����.������.

[��] Rik Portengen. Phased array antenna processing on recon�gurable hardware. Master’s
thesis, University of Twente, December ����.

[��] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing. Prentice Hall,
�th edition, April ����. ISBN ���-�-����-����-�.

[��] Gerard K. Rauwerda. Multi-Standard Adaptive Wireless Communication Receivers
- Adaptive Applications Mapped on Heterogeneous Dynamically Recon�gurable Hard-
ware. PhD thesis, University of Twente, January ����. ISBN ���-��-���-����-�. DOI
��.����/�.�������������.

[��] Gerard K. Rauwerda, Paul M. Heysters, and Gerard J. M. Smit. Towards So�ware
De�ned Radios using Coarse - Grained Recon�gurable Hardware. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, ��(�):�–��, January ����. DOI
��.����/TVLSI.����.������. ISSN ����-����.

http://dx.doi.org/10.1109/ICCAD.2006.320068
http://dx.doi.org/10.1109/ICCAD.2006.320068
http://dx.doi.org/10.1016/S0167-8191(99)00070-8
http://dx.doi.org/10.1016/S0167-8191(99)00070-8
http://www.ni.com/labview/
http://www.nest-consortium.nl/
http://www.nest-consortium.nl/
http://dx.doi.org/10.1145/1391469.1391615
http://dx.doi.org/10.1109/PROC.1986.13583
http://dx.doi.org/10.1109/ROBOT.1999.772516
http://dx.doi.org/10.3990/1.9789036526074
http://dx.doi.org/10.3990/1.9789036526074
http://dx.doi.org/10.1109/TVLSI.2007.912075
http://dx.doi.org/10.1109/TVLSI.2007.912075

���

B�
��
��
��

��
��

[��] Behzad Razavi. RF microelectronics. Prentice Hall, November ����. ISBN ���-�-����-
����-�.

[��] Recore Systems. �e Montium processor. URL http://www.recoresystems.com.
[��] Hideki John Reekie. Realtime Signal Processing: Data�ow, Visual, and Functional Pro-

gramming. PhD thesis, University of Technology Sydney, September ����.
[��] KennethC. Rovers. Front-end research for a low-cost spectrumanalyser. Master’s thesis,

University of Twente, June ����.
[��] Richard H. Roy, Arogyaswami J. Paulraj, and�omas Kailath. ESPRIT - A subspace

rotation approach to estimation of parameters of cisoids in noise. Acoustics, Speech
and Signal Processing, IEEE Transactions on, ��(�):����–����, October ����. DOI
��.����/TASSP.����.�������.

[��] Michael Rübsamen and Alex B. Gershman. Direction-of-Arrival Estimation for
Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC
Methods. Signal Processing, IEEETransactions on, ��(�):���–���, February ����. DOI
��.����/TSP.����.�������.

[��] Ingo Sander. System modeling and design re�nement in ForSyDe. PhD thesis, KTH
Royal Institute of Technology, April ����.

[��] Ingo Sander and Axel Jantsch. System modeling and transformational design re�ne-
ment in ForSyDe. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, ��(�):��–��, January ����. DOI ��.����/TCAD.����.������.

[��] Ralph O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation. An-
tennas and Propagation, IEEE Transactions on, ��(�):���–���, March ����. DOI
��.����/TAP.����.�������.

[��] Dana Scott and Christopher Strachey. Toward amathematical semantics for program-
ming languages. In Computers and Automata, Symposium on, pages ��–��. Sympo-
sium on Computers and Automata, April ����.

[��] Merrill I. Skolnik. Introduction to Radar Systems. McGraw-Hill, �rd edition, Decem-
ber ����. ISBN ���-�-����-����-�.

[��] Gerard J. M. Smit, André B. J. Kokkeler, Pascal T. Wolkotte, Philip K. F. Hölzenspies,
Marcel D. van de Burgwal, and Paul M. Heysters. �e Chameleon Architecture for
Streaming DSP Applications. EURASIP Journal on Embedded Systems, ����:�����,
January ����. DOI ��.����/����/�����.

[��] Gerard J. M. Smit, André B. J. Kokkeler, Pascal T. Wolkotte, and Marcel D. van de
Burgwal. Multi-core Architectures and Streaming Applications. In System Level In-
terconnect Prediction (SLIP ����), ��th International Workshop on, pages ��–��, April
����. DOI ��.����/�������.�������.

[��] Samir S. Soliman and Mandyam D. Srinath. Continuous and Discrete Signals and
Systems. Prentice Hall, �nd edition, January ����. ISBN ���-�-���-����-�.

[��] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed De-
prette. System design using Khan process networks: the Compaan/Laura approach.
In Design, Automation & Test in Europe Conference & Exhibition (DATE ����), pages
���–���, February ����. DOI ��.����/DATE.����.�������.

[��] Fasil C. Taddesse. Implementation of adaptive beamforming on amultiprocessor system
on chip. Master’s thesis, University of Twente, September ����.

http://www.recoresystems.com
http://dx.doi.org/10.1109/TASSP.1986.1164935
http://dx.doi.org/10.1109/TASSP.1986.1164935
http://dx.doi.org/10.1109/TSP.2008.2008560
http://dx.doi.org/10.1109/TSP.2008.2008560
http://dx.doi.org/10.1109/TCAD.2003.819898
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1155/2007/78082
http://dx.doi.org/10.1145/1353610.1353618
http://dx.doi.org/10.1109/DATE.2004.1268870

���

B�����������

[��] Walid Taha, Paul Brauner, Robert Cartwright, Verónica Gaspes, Aaron Ames, and
Alexandre Chapoutot. A Core Language for Executable Models of Cyber Physical
Systems. ACM SIGBED Review, �(�):��–��, June ����. DOI ��.����/�������.�������.

[��] Timon D. ter Braak, Philip K. F. Hölzenspies, Jan Kuper, Johann L. Hurink, and Ger-
ard J. M. Smit. Run-time spatial resource management for real-time applications on
heterogeneous MPSoCs. In Design, Automation & Test in Europe Conference & Ex-
hibition (DATE ����), pages ���–���. European Design and Automation Association,
March ����. ISBN ���-�-�������-�-�.

[��] Timon D. ter Braak, Hermen A. Toersche, André B. J. Kokkeler, and Gerard J. M.
Smit. Adaptive resource allocation for streaming applications. InEmbeddedComputer
Systems (SAMOS ����), International Conference on, pages ���–���, July ����. DOI
��.����/SAMOS.����.�������.

[��] �e MathWorks. MATLAB and Simulink for Technical Computing. URL http://
www.mathworks.com/.

[���] John R. Treichler and Brian G. Agee. A New Approach to Multipath Correction of
ConstantModulus Signals. Acoustics, Speech and Signal Processing, IEEE Transactions
on, ��(�):���–���, April ����. DOI ��.����/TASSP.����.�������.

[���] Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Pey-
ton Jones. Algorithm + strategy = parallelism. Journal of Functional Programming,
�(�):��–��, January ����. DOI ��.����/S����������������.

[���] Alain Vachoux, Christoph Grimm, and Karsten Einwich. SystemC-AMS Require-
ments, Design Objectives and Rationale. In Design, Automation and Test in Europe
Conference and Exhibition (DATE ����), pages ���–���. IEEE, December ����. ISBN
�-����-����-�. DOI ��.����/DATE.����.�������.

[���] Vesa Välimäki and Timo I. Laakso. Principles of fractional delay �lters. In Acoustics,
Speech, and Signal Processing (ICASSP’��), IEEE International Conference on, pages
����–����. IEEE, June ����. DOI ��.����/ICASSP.����.������.

[���] Marcel D. van de Burgwal. Interfacing networks-on-chip : hardware meeting so�ware.
PhD thesis, University of Twente, October ����. ISBN ���-��-���-����-�. DOI
��.����/�.�������������.

[���] Harry L. van Trees. Optimum array processing, volume Detection, estimation and
modulation theory. Wiley, March ����. ISBN ���-�-����-����-�.

[���] Frank E. van Vliet. Trends in Wideband Phased-Array Front-Ends. In European
Radar Conference (EuRAD ����), October ����. ISBN ���-�-�����-���-�. DOI
��.����/EURAD.����.�������.

[���] Sriram Vangal et al. An ��-Tile �.��TFLOPS Network-on-Chip in ��nm CMOS.
In Solid-State Circuits Conference (ISSCC ����), IEEE International, pages ��–��,���,
February ����. DOI ��.����/ISSCC.����.������.

[���] Arthur H. Veen. Data�ow machine architecture. ACM Computing Surveys, ��(�):
���–���, December ����. DOI ��.����/�����.�����.

[���] Hubregt J. Visser. Array and Phased Array Antenna Basics. Wiley, September ����.
ISBN ���-�-���-�����-�.

[���] Jack E. Volder. �e CORDIC Trigonometric Computing Technique. Elec-
tronic Computers, IRE Transactions on, �(�):���–���, September ����. DOI
��.����/TEC.����.�������.

http://dx.doi.org/10.1145/2000367.2000376
http://dx.doi.org/10.1109/SAMOS.2011.6045489
http://dx.doi.org/10.1109/SAMOS.2011.6045489
http://www.mathworks.com/
http://www.mathworks.com/
http://dx.doi.org/10.1109/TASSP.1983.1164062
http://dx.doi.org/10.1017/S0956796897002967
http://dx.doi.org/10.1109/DATE.2003.1253639
http://dx.doi.org/10.1109/ICASSP.2000.860248
http://dx.doi.org/10.3990/1.9789036530675
http://dx.doi.org/10.3990/1.9789036530675
http://dx.doi.org/10.1109/EURAD.2007.4404960
http://dx.doi.org/10.1109/EURAD.2007.4404960
http://dx.doi.org/10.1109/ISSCC.2007.373606
http://dx.doi.org/10.1145/27633.28055
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/TEC.1959.5222693

���

B�
��
��
��

��
��

[���] Jasper D. Vrielink. Phased Array Processing: Direction of Arrival Estimation on Recon-
�gurable Hardware. Master’s thesis, University of Twente, January ����.

[���] John S. Walther. A uni�ed algorithm for elementary functions. In Spring Joint Com-
puter Conference (AFIPS’��), pages ���–���, May ����. DOI ��.����/�������.�������.

[���] ZhanyongWan,Walid Taha, and Paul Hudak. Real-time FRP. In Functional program-
ming (ICFP’��), �th ACMSIGPLAN International Conference on, pages ���–���. ACM,
September ����. DOI ��.����/������.������.

[���] Rinse Wester. A data�ow architecture for beamforming operations. Master’s thesis,
December ����.

[���] Maarten H. Wiggers. Aperiodic multiprocessor scheduling for real-time stream process-
ing applications. PhD thesis, University of Twente, June ����. ISBN ���-��-���-����-
�. DOI ��.����/�.�������������.

[���] Pascal T. Wolkotte. Exploration within the Network-on-Chip Paradigm. PhD
thesis, University of Twente, January ����. ISBN ���-��-���-����-�. DOI
��.����/�.�������������.

[���] Pascal T.Wolkotte, Gerard J. M. Smit, Gerard K. Rauwerda, and Lodewijk T. Smit. An
Energy-E�cient Recon�gurable Circuit Switched Network-on-Chip. In Parallel and
Distributed Processing Symposium (RAW ����), ��th IEEE International. IEEE Com-
puter Society, April ����. ISBN ���-�-����-����-�. DOI ��.����/IPDPS.����.��.

[���] Zhengyuan Xu. New cost function for blind estimation of M-PSK signals. InWireless
Communications and Networking Conference (WCNC ����), IEEE, pages ����–����,
September ����. DOI ��.����/WCNC.����.������.

[���] Haiyang Zheng. Operational Semantics of Hybrid Systems. PhD thesis, University of
California Berkeley, May ����. ISBN ���-�-���-�����-�.

[���] Ilan Ziskind and Mati Wax. Maximum likelihood localization of multiple sources by
alternating projection. Acoustics, Speech and Signal Processing, IEEE Transactions on,
��(��):����–����, October ����. DOI ��.����/��.����.

http://dx.doi.org/10.1145/1478786.1478840
http://dx.doi.org/10.1145/507635.507654
http://dx.doi.org/10.3990/1.9789036528504
http://dx.doi.org/10.3990/1.9789036527576
http://dx.doi.org/10.3990/1.9789036527576
http://dx.doi.org/10.1109/IPDPS.2005.95
http://dx.doi.org/10.1109/WCNC.2000.904857
http://dx.doi.org/10.1109/29.7543

List of Publications

R�������

[KCR:�] Arjan C. Dam, Michel G. J. Lammertink, Kenneth C. Rovers, Johan Slagman,
Arno M. Wellink, Gerard K. Rauwerda, and Gerard J. M. Smit. Hardware / So�-
ware Co-design Applied to Reed-Solomon Decoding for the DMB Standard. In
Digital System Design: Architectures, Methods and Tools (DSD ����), �th EU-
ROMICRO Conference on, pages ���–���. IEEE Computer Society, August ����.
ISBN ���-�-����-����-�. DOI ��.����/DSD.����.��.

[KCR:�] Mark S. Oude Alink, André B. J. Kokkeler, Eric A. M. Klumperink, Kenneth C.
Rovers, Gerard J. M. Smit, and Bram Nauta. Spurious-Free Dynamic Range
of a Uniform Quantizer. Circuits and Systems Part II: Express Briefs, IEEE
Transactions on, ��(�):���–���, June ����. ISSN ����-����. DOI ��.����/TC-
SII.����.�������.

[KCR:�] Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, and Gerard J. M. Smit.
Towards e�ectivemodeling and programmingmulti-core tiled recon�gurable ar-
chitectures. In Engineering of Recon�gurable Systems & Algorithms (ERSA ’��),
International Conference on, pages ���–���. CSREA, July ����. ISBN ���-�-�����-
���-�.

[KCR:�] Koen C. H. Blom, Marcel D. van de Burgwal, Kenneth C. Rovers, André B. J.
Kokkeler, and Gerard J. M. Smit. DVB-S Signal Tracking Techniques for Mo-
bile Phased Arrays. In Vehicular Technology Conference Fall (VTC ����-Fall),
IEEE ��nd, pages �–�. IEEE, September ����. ISBN ���-�-����-����-�. DOI
��.����/VETECF.����.�������.

[KCR:�] Anja Niedermeier, Rinse Wester, Kenneth C. Rovers, Christiaan Baaij, Jan Ku-
per, and Gerard J. M. Smit. Designing a data�ow processor using CλaSH. In
NORCHIP ����, pages �–�. IEEE, November ����. ISBN ���-�-����-����-�. DOI
��.����/NORCHIP.����.�������.

[KCR:�] Marcel D. van de Burgwal, Kenneth C. Rovers, Koen C. H. Blom, André B. J.
Kokkeler, and Gerard J. M. Smit. Adaptive Beamforming Using the Recon�g-
urable MONTIUM TP. In Digital System Design: Architectures, Methods and
Tools (DSD ����), ��th Euromicro Conference on, pages ���–���. IEEE Computer
Society, September ����. ISBN ���-�-����-����-�. DOI ��.����/DSD.����.��.

[KCR:�] Koen C. H. Blom, Marcel D. van de Burgwal, Kenneth C. Rovers, André B. J.
Kokkeler, and Gerard J. M. Smit. Angular CMA: A modi�ed Constant Modulus
Algorithm providing steering angle updates. InWireless andMobile Communica-
tions (ICWMC ����), �th International Conference on, pages ��–��. IARIA, June
����. ISBN ���-�-�����-���-�.

http://dx.doi.org/10.1109/DSD.2006.59
http://dx.doi.org/10.1109/TCSII.2009.2020929
http://dx.doi.org/10.1109/TCSII.2009.2020929
http://dx.doi.org/10.1109/VETECF.2010.5594146
http://dx.doi.org/10.1109/VETECF.2010.5594146
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1109/DSD.2010.13

���

L�
��

��
P�

��
��
��

��
��

[KCR:�] Kenneth C. Rovers, Jan Kuper, and Gerard J. M. Smit. �e problem with time in
mixed continuous/discrete time modelling. ACM SIGBED Review, �(�):��–��,
June ����. ISSN ����-����. DOI ��.����/�������.�������.

[KCR:�] Kenneth C. Rovers, Jan Kuper, Marcel D. van de Burgwal, André B. J. Kokkeler,
and Gerard J. M. Smit. Mixed continuous / discrete time modelling with exact
time adjustments. InWireless Communications andMobile ComputingConference
(CyPhy’��), �th International, pages ����–����. IEEE, July ����. ISBN ���-�-����-
����-�. DOI ��.����/IWCMC.����.�������.

[KCR:��] Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, André B. J. Kokkeler,
andGerard J.M. Smit. Multi-domain transformational design �ow for embedded
systems. InEmbeddedComputer Systems (SAMOS ����), International Conference
on, pages ��–���. IEEE Computer Society, July ����. ISBN ���-�-����-����-�.
DOI ��.����/SAMOS.����.�������.

[KCR:��] Marcel D. van de Burgwal, Kenneth C. Rovers, Koen C. H. Blom, André B. J.
Kokkeler, and Gerard J. M. Smit. Mobile satellite reception with a virtual satellite
dish based on a recon�gurablemulti-processor architecture.Microprocessors and
Microsystems, pages �–��, ����. ISSN ����-����. DOI ��.����/j.micpro.����.��.���.

N��-��������

[KCR:��] Kenneth C. Rovers, Marcel D. van de Burgwal, André B. J. Kokkeler, and Gerard
J. M. Smit. Rationale for and design of a generic tiled hierarchical phased array
beamforming architecture. In Circuits, Systems and Signal Processing (ProRISC
����), ��th Annual Workshop on, pages ���–���. STW Technology Foundation,
November ����.

[KCR:��] Marcel D. van de Burgwal, Kenneth C. Rovers, André B. J. Kokkeler, Gerard
J. M. Smit, S Kasra Garakoui, Michiel C M Soer, Eric A. M. Klumperink, and
Bram Nauta. CMOS Beamforming Techniques project overview. In Scien-
ti�c ICT Research Event Netherlands (SIREN ����). Informatica Platform Ned-
erland, October ����. URL http://www.ictonderzoek.net/3/assets/
File/posters/2007_23/2007_23.pdf.

[KCR:��] Kenneth C. Rovers, Jan Kuper, and Gerard J. M. Smit. Semantic programming
model-based design - De�ning a hierarchical tiled multi-processor architecture.
In Circuits, Systems and Signal Processing (ProRISC ����), ��th Annual Workshop
on, pages ��–��. STW Technology Foundation, November ����.

[KCR:��] Kenneth C. Rovers, Marcel D. van de Burgwal, André B. J. Kokkeler, Jan
Kuper, and Gerard J. M. Smit. Phased Array Beamforming Processing
- Semantic & Data�ow Model Based Design. In Scienti�c ICT Research
Event Netherlands (SIREN ����). Informatica Platform Nederland, November
����. URL http://www.ictonderzoek.net/3/assets/File/posters/
2009_44/2009_44.pdf.

[KCR:��] Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, André B. J. Kokkeler,
and Gerard J. M. Smit. On recon�gurable tiled multi-core programming - Pro-
cessing cores evaluation. In Circuits, Systems and Signal Processing (ProRISC
����), ��th Annual Workshop on, pages ���–���. STW Technology Foundation,
November ����.

http://dx.doi.org/10.1145/2000367.2000373
http://dx.doi.org/10.1109/IWCMC.2011.5982696
http://dx.doi.org/10.1109/SAMOS.2011.6045449
http://dx.doi.org/10.1016/j.micpro.2011.08.005
http://www.ictonderzoek.net/3/assets/File/posters/2007_23/2007_23.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2007_23/2007_23.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2009_44/2009_44.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2009_44/2009_44.pdf

ISBN 978-90-365-3294-5

Kenneth C. Rovers
received his M.Sc. degree in elec-

trical engineering and his M.Sc. degree
in computer science in 2006 from the

University of Twente, the Netherlands. For the last
five years he has been working towards his Ph.D. degree

in the Computer Architecture for Embedded Systems
(CAES) group at the same university. His master’s thesis
was on the system design of RF front-ends. The work
presented in this thesis is in the area of model-based
design of embedded systems, focusing on the modelling
of multiple domains, accurate inclusion of time, mathe-

matical definitions, and model transformations,
with a beamforming application as an example.

His research interests include system level design,
functional programming, reconfigurable

tiled architectures, and dataflow
processors.

	Introduction
	Trends in embedded systems
	Beamforming as an example
	Problem statement
	Contributions
	Outline

	Application domain: beamforming
	Characteristics
	Signal processing
	Streaming data
	Hybrid systems
	Adaptive algorithms

	Phased array beamforming theory
	Beamforming
	Beamsteering
	Time delay
	Phase shift
	Hilbert transform

	Delay at baseband
	Narrowband and wideband
	Phased array system characteristics

	Generic beamforming platform
	Applications
	Requirements
	System design
	Beamforming location
	Block diagram
	Environment
	Analogue front-end
	Digital processing

	Hierarchical beamforming
	Hybrid beamforming

	Beamcontrol
	Beamcontrol algorithm classes
	Temporal reference
	Spatial reference
	Blind

	Extended CMA
	Constant modulus algorithm
	Phase extension
	E-CMA for beamforming
	Results

	Angular CMA
	Derivation
	Results

	Conclusion

	Tiled reconfigurable architectures for beamforming
	Requirements from the application domain
	Distributed processing
	Communication infrastructure
	Flexibility

	Architecture
	Tiled architectures
	Reconfigurable architectures
	The programming challenge

	Experiments with tiled reconfigurable architectures
	Audio beamforming on a single reconfigurable processor
	A tiled reconfigurable architecture for a DVB-S beamformer
	A conceptual tiled architecture for radio astronomy
	Discussion

	Conclusion

	Model-based design of multi-domain systems
	Motivation
	Model-based design
	Systems engineering
	Model transformations
	Design space exploration

	Environment
	Dataflow
	Mathematical foundation
	Mathematical definition
	Functional languages

	Time, signals, components and systems
	Continuous and discrete time signals
	Signal flow diagrams
	Signals and components in dataflow models
	Other domains

	The problem with time
	Notions of time
	Global solver
	Discretisation of time
	Time transformations

	Survey of existing tools
	Major tools
	Exact continuous time domain modelling
	Multi-domain modelling
	Mathematical definitions
	Model transformation support
	Automatic parallelisation

	Unified modelling based on time
	Model-based design
	Exact continuous time domain modelling
	Mathematical definitions

	Design flow
	Co-design
	Analogue/Digital co-design
	Hardware/Software co-design

	Partitioning
	Example

	Conclusion

	UniTi
	Formalisation of the domains
	Continuous time
	Discrete time
	Dataflow
	Processes and channels
	Components and signals
	Definitions
	Definitions provided by UniTi
	Generalisation

	Representation in Haskell

	Composition
	Sequential
	Parallel
	Feedback
	Representation in Haskell
	Algebra
	Calculus

	Integration of the domains
	DT CT
	DF DT
	Unified model
	Time
	Multi-rate

	Simulation
	Evaluation
	Visualisation
	Memory and state
	Using state
	Hiding state
	Feedback with state in the CT domain

	Model transformations
	Co-design
	Partitioning
	Control parallelism
	Data parallelism
	Aggregate operations
	Transformation

	Design space exploration

	Conclusion

	Case study
	Specification
	Co-design
	Simple beamformer
	Simulink model
	UniTi model
	Comparison

	Adaptive beamformer
	Simulink model
	UniTi model
	Comparison

	Hierarchical beamformer
	Simulink model
	UniTi model
	Comparison

	Partitioning
	Granularity
	E-CMA on a tiled architecture

	Mapping
	Assignment of kernels
	Scheduling

	Implementation
	Beamformer
	Baseband processing
	Beamcontrol

	Results
	UniTi
	Applicability
	Flexibility

	Adaptive beamforming on the LEON SoC platform
	Applicability
	Flexibility

	Conclusion

	Conclusions
	Research questions
	Discussion
	Outlook

	Dataflow
	Terminology
	Dataflow model
	Dataflow analysis
	Dataflow execution
	Properties

	The Montium
	Processor landscape
	The Montium processor
	Kernels implemented on the Montium

	Acronyms
	Bibliography
	List of Publications
	Refereed
	Non-refereed

