3 "
*

*.

dv

L
.
-

Functional model-based design

, ,‘é’f embeddeq systems wlth UNITI

V

Functional model-based design
of embedded systems
with UNITI

Kenneth C. Rovers

University of Twente (promotor)
University of Twente (assistant promotor)

Members of the dissertation committee:
University of Twente (assistant promotor)
University of Twente / NXP Semiconductors N.V.

prof. dr.ir. G.J.M. Smit
dr.ir. J. Kuper
dr.ir. A.B.J. Kokkeler
prof. dr.ir. M.J.G. Bekooij
prof.dr.ir. EE.van Vliet University of Twente / TNO
prof. 'W.M. Taha, Eng., PhD Halmstad University, Sweden
dr.ir. H. Schurer Thales Nederland B.V.
prof.dr.ir. A.J. Mouthaan University of Twente (chairman and secretary)
This research has been conducted within the Netherlands
\\\\ Streaming (NEST) project (10346), supported by the Dutch
§ Technology Foundation STW, applied science division of NWO
> and the Technology Program of the Ministry of Economic
Affairs.
THALES Thisresearch has been supported by Thales Nederland B.V.
CTIT Ph.D. Thesis Series No. 11-213
Centre for Telematics and Information Technology
University of Twente, P.O.Box 217, NL-7500 AE Enschede

CTIT

Copyright © 2011 by Kenneth C. Rovers, Enschede, the Netherlands.
All rights reserved. No part of this book may be reproduced or transmitted, in any

form or by any means, electronic or mechanical, including photocopying, micro-
filming, and recording, or by any information storage or retrieval system, without

prior written permission of the author.

Typeset with ETEX.
This thesis was printed by Gildeprint, the Netherlands.

978-90-365-3294-5

1381-3617 (CTIT Ph.D. Thesis Series No. 11-213)
10.3990/1.9789036532945

ISBN
ISSN
DOI

FUNCTIONAL MODEL-BASED DESIGN
OF EMBEDDED SYSTEMS

wiITH UNITI

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. H. Brinksma,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op vrijdag 2 december 2011 om 14.45 uur

door
Kenneth Christian Rovers

geboren op 8 april 1978
te Rotterdam

Dit proefschrift is goedgekeurd door:

prof. dr.ir. G.J.M. Smit (promotor)
dr.ir. J. Kuper (assistent promotor)
dr.ir. A.B.J. Kokkeler (assistent promotor)

Voor jou en mij

Abstract

Advancing the field of embedded systems requires a rigorous approach to their
design. This is because embedded systems are complex, diverse and challenging.
Yet the design of embedded systems is typically performed in an ad-hoc manner.
There is strong evidence that this is reaching its limits and that the design process
calls for a unified, integrated, and formal approach. However, we are let down by
tool support. Although many tools exist, none support the following four essential
features: (i) the modelling of multiple domains, (ii) accurate inclusion of time,
(iii) mathematical definitions, and (iv) model transformations. In addition, such a
tool must underlie a sound design flow that adequately supports the complexity of
designing embedded systems.

In this thesis we propose a design flow and a modelling and simulation frame-
work called UNITI that manages complexity in a top-down fashion; a problem is split
up into sub-problems that are solved individually and then combined. This design
flow and framework is based on model-based design, i.e. a single reference model
is iteratively and incrementally developed and refined during the design process.
Our approach is a functional approach, not only because it is practical and useful,
but also because it has a mathematical basis supported by a functional language, i.e.
computations are considered as evaluations of mathematical functions.

In this work we specialise the design for the application domain of beamforming
applications. Beamforming applications use signal processing to achieve direction-
ality for an array of antennas. After a discussion of the basic theory of beamforming,
we propose a generic platform for beamforming applications. This platform is hier-
archical in the sense that beamforming is performed in multiple stages, and hybrid
in the sense that both analogue as well as digital stages are used. A directional
antenna can be exploited to search for and track signals-of-interest. Two adaptive
algorithms for tracking are developed in the context of this platform.

Next, we investigate suitable architectures for the platform. Supporting multiple
applications in an application domain requires scalability to accommodate differ-
ently sized applications and flexibility to accommodate different functionality of
applications. However, the architecture must also be efficient, because most embed-
ded systems are resource constrained. A tiled reconfigurable architecture is used, as
the tiles provide scalability and reconfigurability provides flexibility. Reconfigurabil-
ity refers to the ability to configure a processor to perform the same computations
on a time scale much larger than the processing of individual data elements, im-
proving efficiency by reducing control signal changes and allowing only a limited
set of configurations. As not much is known yet about larger high-performance
applications (such as beamforming) on tiled reconfigurable embedded systems,

viii

we will explore beamforming on tiled architectures. Different beamforming meth-
ods are implemented for a single reconfigurable processor, which can be selected
by reconfiguration. Furthermore, reconfigurability supports switching between a
computationally intensive searching algorithm and beamforming combined with a
much less intensive tracking algorithm. The beamforming applications considered
(radar, radio astronomy, satellite reception and wireless communications) are too
large to fit on a single tile. Therefore such applications must be partitioned over
multiple tiles. This involves making computation and communication explicit, for
which we use a dataflow model. Furthermore, this requires the communication
infrastructure to be flexible and reconfigurable as well. Finally, we will explore the
mapping of a larger beamforming application, a radio astronomy application, on a
conceptual architecture consisting of 64 tiles per integrated circuit (IC).

The design of a beamforming platform based on a tiled architecture is sup-
ported by a single model that is refined during development. Therefore we need
to represent the environment, the architecture and the applications in this model.
The environment models the signals that are received at the antennas and requires
exact modelling of time delays in the continuous-time (CT) domain. In addition,
analogue hardware is represented in the CT domain, while digital hardware is rep-
resented in the discrete-time (DT) domain and the dataflow (DF) domain is used
to represent the software. We propose to use model transformations for the design
steps in the design flow, each time breaking down the design into sub-components.
We start with an executable specification using mathematical definitions. Then, we
perform analogue/digital co-design and hardware/software co-design to divide the
functionality over the domains. The next step is division within a domain, consisting
of partitioning the application (software). This last step requires parallelisation of
the application, after which the partitioned application is mapped and implemented
onto the tiles, i.e. assigned to hardware.

There are few tools that support the CT, DT and DF domains in a single frame-
work. There are even fewer tools that support model transformations for the pre-
sented design steps. Finally, there are no tools (to the best of our knowledge) that
are able to exactly model time transformations, such as time delays.

UNITI does provide these features. It supports multiple domains: we formally
define the CT, DT and DF domains. UN1T1 also supports exact time delays in the
CT domain. This is made possible because signals in the CT domain are represented
as functions of time, and model components, represented as signal transformations,
are composed using function composition instead of value-passing. To integrate
the domains their interaction is defined. UN1TI supports unified sequential, parallel
and feedback composition of model components. This is achieved by re-defining
the dataflow model to match with CT and DT components and signals. As a conse-
quence, mixed-domain models are executable for simulation. State is introduced to
improve simulation performance. Visualisations are provided as side-effects during
simulation. Finally, UN1TI provides support for model transformations; by using
(i) automated interaction between domains, (ii) aggregate definitions which specify
algorithms at a higher abstraction level, and (iii) by higher-order transformations
that exploit mathematical properties of the formally defined models.

We verify UNIT1 with beamforming on a tiled architecture as a case study. The
steps in the design flow are followed from specification to implementation. An
executable specification is defined of a simple beamformer, an adaptive beamformer
with a tracking algorithm and a hierarchical beamformer. Co-design is performed
leading to multi-domain models representing the environment and the system
(architecture and applications). These UNI1TI models are compared to equivalent
models in Simulink, and are found to be more efficient (in execution time) while
providing exact time delays. Next, the adaptive beamformer is partitioned, mapped
and implemented on a small prototype tiled reconfigurable architecture. Finally,
the UN1T1 design flow and framework is evaluated.

The result of this work is a functional model-based design approach for de-
signing, modelling, and simulation of embedded systems. UN1Tt supports unified
composition of multi-domain models and accurate inclusion of time. Using a uni-
fied formal transformational design approach improves the interaction between
domains and enables smaller iterations, early integration and design space explo-
ration; all sustaining the design of more complex systems. As such, embedded
system design is taken to a higher level, allowing the promise of model-based
design to become reality.

Samenvatting

Ingebedde of geintegreerde systemen zijn complex, divers en uitdagend. Toch blijkt
er bij het ontwerpen van deze systemen vaak sprake te zijn van een ad-hoc aanpak.
Er zijn sterke aanwijzingen dat deze aanpak de ontwikkeling van de systemen be-
grenst. Om verdere ontwikkelingen mogelijk te maken is het noodzakelijk om bij
het ontwerpproces een universele, geintegreerde en formele aanpak te hanteren.
Gangbare programma’s ter ondersteuning van het ontwerpproces blijken hiervoor
ontoereikend. Hoewel er vele programma’s bestaan, biedt geen daarvan ondersteu-
ning voor vier essentiéle eigenschappen: (i) het modelleren van meerdere domeinen,
(ii) accurate ondersteuning van tijd, (iii) wiskundige definities en (iv) model trans-
formaties. Tevens zou een dergelijk programma de onderbouwing dienen te vormen
van een aanpak die de complexiteit van het ontwerpen van geintegreerde systemen
adequaat ondersteunt.

In dit proefschrift presenteren we een ontwerpproces samen met een raamwerk
voor modellering en simulatie, genaamd UN1T1. Hierin wordt complexiteit beheerst
door het probleem op te splitsen in deel-problemen, deze individueel op te lossen,
en vervolgens weer te combineren. Het ontwerp proces en raamwerk zijn afgeleid
van model-gebaseerd-ontwerp. Hierbij wordt één enkel referentie model iteratief
en stapsgewijs ontwikkeld en verfijnd. Onze aanpak is een functionele aanpak, niet
alleen omdat het praktisch en bruikbaar is, maar ook omdat het een wiskundige
basis heeft welke ondersteund wordt door een functionele taal, dat wil zeggen een
berekening wordt beschouwd als de evaluatie van een wiskundige functie.

We specialiseren het ontwerp, in dit werk, voor het applicatie domein van bun-
delvorming applicaties. Bundelvorming applicaties gebruiken signaalverwerking
operaties om richtingsgevoeligheid te bewerkstelligen voor een rooster van anten-
nes. Nadat we de basistheorie van bundelvormen hebben behandeld, wordt een
generiek platform gepresenteerd dat geschikt is voor meerdere bundelvorming
applicaties. Dit platform is hiérarchisch omdat bundelvorming in meerdere stappen
wordt uitgevoerd, en hybride omdat zowel analoge als digitale stappen worden ge-
bruikt. Een richtingsgevoelige antenne kan worden gebruikt om signalen te zoeken
of te volgen. In de context van dit platform zijn twee adaptieve algoritmes voor het
volgen van signalen ontwikkeld.

Vervolgens evalueren we geschikte architecturen voor dit platform. Om meer-
dere applicaties binnen een applicatie domein te ondersteunen is schaalbaarheid
nodig voor verschillende applicatie groottes, en flexibiliteit voor het ondersteu-
nen van verschillende (bundelvormings-) applicaties. Tevens moet de architectuur
efficiént zijn, aangezien geintegreerde systemen beperkte middelen tot hun be-
schikking hebben. We gebruiken een getegelde herconfigureerbare architectuur,

xii

waarbij de tegels voor schaalbaarheid zorgen en de herconfigureerbaarheid voor
flexibiliteit zorgt. Herconfiguratie staat voor het configureren van een processor
zodat deze dezelfde berekeningen uitvoert op een tijdschaal die veel groter is dan de
tijdschaal van de individuele data elementen. Daarbij wordt de efficiéntie verbeterd
door het verminderen van controle signalen. We verkennen verschillende imple-
mentaties van bundelvormen op een getegelde herconfigureerbare architectuur,
aangezien er nog weinig bekend is over het uitvoeren van grotere reken-intensieve
applicaties (zoals bundelvorming) op getegelde herconfigureerbare ingebedde sys-
temen. Verschillende bundelvormings methoden zijn geimplementeerd op een
enkele herconfigureerbare processor, waarbij de methode wordt geselecteerd door
herconfiguratie. Herconfiguratie ondersteunt ook het wisselen tussen een reken-
intensief zoek-algoritme en de combinatie van bundelvormen met een veel minder
reken-intensief volg-algoritme. De beoogde bundelvorming applicaties (radar, ra-
dio astronomie, satelliet ontvangst en draadloze communicatie) zijn te groot om
uitgevoerd te worden op één tegel. De applicatie moet daarom verdeeld worden
over meerdere tegels. Hiervoor worden de berekeningen en de communicatie ex-
pliciet gemaakt door gebruik te maken van een dataflow model. Verder moet de
communicatie infrastructuur evenwel flexibel en herconfigureerbaar zijn. Tenslotte
onderzoeken we de verdeling van een grotere bundelvorming applicatie, een radio
astronomie applicatie, over een concept architectuur bestaande uit 64 tegels per
geintegreerd schakeling (IC).

Het ontwerp van een platform voor bundelvormen gebaseerd op een getegelde
architectuur wordt ondersteund door één model dat tijdens het ontwerp proces
wordt verfijnd. In dit model worden daarom de omgeving, de architectuur en de ap-
plicatie gerepresenteerd. De omgeving modelleert de signalen die door de antennes
worden ontvangen, en het is daarbij noodzakelijk dat tijdvertragingen in het conti-
nue tijd (CT) domein exact zijn. Tevens is de analoge hardware gerepresenteerd in
het CT domein, terwijl de digitale hardware in het discrete tijd (DT) domein wordt
gerepresenteerd en het dataflow (DF) domein is gebruikt om de software te represen-
teren. We gebruiken model transformaties voor de ontwerpstappen in het ontwerp
proces, waarbij elke keer het ontwerp opgedeeld wordt in sub-componenten. Het
startpunt is een uitvoerbare specificatie door gebruik te maken van wiskundige
definities. Dan verdelen we de functionaliteit over de domeinen door gebruik te
maken van analoog/digitaal co-ontwerp en hardware/software co-ontwerp. De
volgende stap is verdeling binnen een domein, bestaande uit opdeling van de appli-
catie (software). Deze laatste stap vereist parallellisatie van de applicatie, waarna de
opgedeelde applicatie wordt toegewezen aan en geimplementeerd op de tegels van
de hardware.

Er zijn weinig programmas die de CT, DT en DF domeinen in één raamwerk
ondersteunen. Er zijn nog minder programma’s die modeltransformaties ondersteu-
nen voor de gepresenteerde ontwerp stappen. Tenslotte zijn er geen programma’s
(zover ons bekend) die in staat zijn tijdtransformaties, zoals een tijdvertraging,
exact te modelleren.

Un1Tr ondersteunt dit allemaal wel. Het ondersteunt meerdere domeinen: we
definiéren de CT, DT en DF domeinen formeel. UNITI ondersteunt ook exacte

tijdvertragingen in het CT domein. Dit is mogelijk omdat signalen in het CT do-
mein als functies van tijd worden gerepresenteerd en omdat componenten van
het model, gerepresenteerd als signaal transformaties, worden samengesteld met
functie-compositie in plaats van het doorgeven van waardes. Om de domeinen te
integreren wordt hun interactie gedefinieerd. Tevens ondersteunt UNITI universele
compositie van modelcomponenten met behulp van sequentiéle koppeling, paral-
lelle koppeling and terugkoppeling. Om universele compositie mogenlijk te maken
is het dataflow model hergedefinieerd om aan te sluiten bij CT en DT componenten
en signalen. Als gevolg zijn modellen met meerder domeinen uitvoerbaar voor
simulatie. Het bijhouden van de toestand tijdens de simulatie word geintroduceerd
om de efficiéntie te verbeteren. Tenslotte ondersteunt UN1Tt model transformaties
door gebruik te maken van (i) automatische interactie tussen domeinen, (ii) aggre-
gaat definities voor het specificeren van algoritmes op een hoger abstractie niveau en
(iii) door hogere-orde transformaties die handig gebruik maken van de wiskundige
kenmerken van de formeel gedefinieerde modellen.

We verifiéren UNITI met bundelvormen op een getegelde architectuur als een
casestudy. Daarbij worden de stappen in het ontwerpproces gevolgd van specificatie
tot implementatie. Een uitvoerbare specificatie van een simpele bundervormer, een
adaptieve bundelvormer en een hierarchische bundelvormer zijn gedefinieerd. De
co-ontwerp stap leidt tot multi-domein modellen welke de omgeving en het systeem
(architectuur en applicatie) representeren. Deze UNITI modellen zijn vergeleken met
equivalente modellen in Simulink en het blijkt dat de UN1T1 modellen efficiénter zijn
(in executie-tijd), terwijl ze ook exacte tijdvertragingen ondersteunen. Vervolgens
is de adaptieve bundelvormer opgedeeld, toegewezen aan en geimplementeerd op
een kleine getegelde herconfigureerbare prototype architectuur. Tenslotte zijn het
Un1T1 ontwerp proces en raamwerk geévalueerd.

Het resultaat van dit werk is een functionele model-gebaseerde ontwerpme-
thode voor het ontwerpen, modelleren en simuleren van ingebedde systemen.
UN1TI ondersteunt universele compositie van multi-domein modellen en accu-
rate ondersteuning van tijd. Door gebruik te maken van een universele formele
ontwerp methode met modeltransformaties wordt de interactie tussen de domei-
nen verbeterd en worden kleinere iteraties, snellere integratie en exploratie van
de ontwerp-ruimte mogelijk; allemaal dragen ze bij aan het ontwerpen van meer
complexe systemen. Het ontwerpen van ingebedde systemen wordt als zodanig
naar een hoger niveau getild, waarmee de belofte van model-gebaseerd ontwerp
realiteit kan worden.

xiii

Dankwoord

Voor je ligt het resultaat van vijf jaar hard werken. Dat promoveren een uitdaging
zou worden stond van te voren al vast. Dat de grootste uitdaging niet in het werk
zou liggen had ik echter niet kunnen weten. Maar het is gelukt; het boekje ligt er. Er
zijn echter vele mensen die hier direct of indirect aan hebben bijgedragen, zonder
wie het niet gelukt was, en die wil ik hierbij dan ook graag bedanken.

Ten eerste wil ik natuurlijk mijn promotor en co-promotoren, Gerard, Jan en
André, bedanken. Jan kwam pas bij de groep toen ik al anderhalf jaar bezig was, maar
direct was er de herkenning in de manier van programmeren die Jan meebracht.
Door mijn gecombineerde achtergrond in elektrotechniek en informatica paste
functioneel programmeren veel beter bij mijn belevingswereld. In de zomer van
2008 gingen Jan en ik naar een “summer-school” over multi-processor systemen in
Valkenburg. Ik kan wel zeggen dat de kern van dit proefschrift tot stand is gekomen
tijdens deze week. Deze benadering was echter zo vanzelfsprekend voor mij, dat het
nog lang heeft geduurd voordat ik herkende dat mijn aanpak wezenlijk vernieuwend
was. Dit was nooit gelukt zonder de hulp en het vertrouwen van Jan. Samen hebben
we nog wel keihard moeten werken om alles rond te krijgen het afgelopen jaar, en
ook daar ben ik Jan heel dankbaar voor.

Ook bij André staat de deur altijd open. André weet feilloos de kern van je werk
en wat je wil zeggen bloot te leggen. En bij eventuele problemen weet je zeker dat
een paar uur discussie met André, samen met een vol white-board, een oplossing
geeft. Als je met werk of vragen van welke aard dan ook bij André komt; je kan erop
rekenen dat het secuur bekeken wordt en dat je met goed advies, inclusief een lijst
met spelfouten, weer vertrekt. Hier heb ik de afgelopen jaren dan ook veelvuldig
gebruik van gemaakt.

Gerard is er voor het grote geheel, en als zodanig perfect op zijn plaats als prof
van de groep. Gerard heeft me de mogelijkheid en ruimte gegeven om de inhoud
van mijn promotie zelf te bepalen, maar toch weet Gerard altijd de koppeling en
relevantie van het werk met de rest van de groep te behouden. Ook kan je altijd bij
Gerard terecht als er een stuk tekst, zoals een paper of een hoofdstuk, gereviewed
moet worden. Binnen no-time heb je dan commentaar terug dat exact aangeeft
waar de sterke en zwakke punten zitten. Hier heb ik vele malen veel profijt van
gehad.

Ook de rest van de commissie wil ik graag bedanken; Hans voor de vruchtbare
discussies tijdens de vele bezoeken aan Thales, en tijdens mijn stage daar, Frank voor
het samen brainstormen over de inhoud en de structuur van het proefschrift, wat de
lijn van het verhaal erg heeft geholpen, Marco voor de altijd interessante discussies,
welke vaak nuttig bleken om mijn claims scherp te krijgen, and finally Walid Taha

XVi

who, as one of the few, is also working in both the areas of functional programming
and embedded system design, and who provided encouraging acknowledgement
of my work in a larger setting than the Twente region.

Tijdens mijn promotie ben ik betrokken geweest bij het NEST project en bij het
CMOS Beamforming project. Iedereen bedankt voor de interessante presentaties,
discussies en feedback die voortkwamen uit deze projecten de afgelopen jaren.

Als dubbelstudent lag mijn interesse op het grensvlak van elektrotechniek en
informatica, tussen hardware en software, tussen analoog en digitaal, toegepast op de
architectuur. Het was dan ook logisch dat ik bij de CAES groep terecht kwam, waar
dit ook leefde. Ik was één van de eerste AiO’s die Gerard als nieuwe prof aannam en
heb CAES onder zijn hand (verder) zien uitgroeien tot een geweldige, dynamische,
betrokken en bovenal gezellige groep: bedankt allemaal. Ook onmisbaar zijn
natuurlijk de secretaresses, wat dat betreft zitten we bij CAES goed met Marlous,
Thelma en Nicole.

Het gros van de tijd heb ik Marcel als kamergenoot en als semi-gedeelde project-
genoot gehad. Buiten dat het erg gezellig was, heb ik onze samenwerking altijd als
zeer prettig ervaren; vaak lagen wij op één lijn wat betreft onze ideeén, maar toch
konden we elkaar ook altijd aanvullen. Meestal samen hebben we een heel blik aan
afstudeerders begeleid, wiens werk zeker ook heeft bijgedragen aan dit proefschrift:
Rik, Jasper, Mark, Koen, Gerard, Fassil en Rinse bedankt.

Met de voorbereiding en tijdens de verdediging ben ik heel blij dat Koen en
Bastiaan mij bijstaan als paranimfen. Bastiaan ken ik al van uit de box en tijdens
de middelbare school werden we echt goede vrienden. Samen hebben we ook een
flat en onze studietijd gedeeld. Een tijd die ik enorm waardeer en waar ik met veel
plezier aan terug denk. Ook daarbuiten ben je er altijd als vriend. Het is daarom
ook passend dat je er bij bent, bij deze toch soort van afsluiting van het “eeuwige®
studeren. Koen ken ik een stuk korter, maar zeker sinds je in Zutphen woont stel
ik je vriendschap op prijs, met vele goeie discussies of gezellige gesprekken, in de
trein of bij een biertje. Daarbuiten heb je ook een belangrijke inhoudelijke bijdrage
geleverd aan dit proefschrift. Fijn dat je me daarom ook bijstaat als paranimf.

Het lijkt soms zo dat er geen wereld is buiten het promoveren, maar toch had ik
het zonder vrienden en familie niet gered. Sommige daarvan ken ik al heel lang.
Toch heeft soms de frequentie van het contact moeten lijden, maar dat maakt de
waardering niet minder. Ik kan de verleiding toch niet weerstaan om een aantal in
het bijzonder te noemen; Bas & San, en tegenwoordig ook kleine Hannah, bedankt
voor jullie vriendschap. Ermano, ook wij hebben al heel wat meegemaakt, bedankt
voor alles. Anneke, ik zie je wat minder, maar elke keer weer sinds die eerste vlucht
naar de nieuwe wereld, klikt het. Van mijn UT tijd heb ik ook een aantal goeie
vrienden overgehouden. Arno, met jou is het altijd een avontuur, op de scooter in
Koh Phangan of in de kajak bij Milford Sound, of gewoon in Nederland met een
goed gesprek. Jeroen, jouw drive en enthousiasme heb ik altijd bewonderd, maar
bovenal waardeer ik je gezelligheid. Tenslotte wil ik dan nog de familie bedanken:
opa en oma natuurlijk, alle ooms en tantes, en alle andere familie.

De basis van wie je bent wordt toch thuis gelegd, en wat dat betreft had ik het
niet beter kunnen treffen. Altijd kon en kan ik terugvallen voor steun, warmte en

vertrouwen. De basis van mijn nieuwsgierigheid, motivatie, het doorzettingsvermo-
gen en de rust komt van pap. Het doet dan ook veel pijn dat je er niet in persoon
bij kan zijn. In mijn hart draag ik je bij me, ik weet dat je trots zou zijn. Mam, van
jou komt het enthousiasme, de kracht, en alle steun en zorg die ik nodig heb. Dit
proefschrift is ook voor jou. Natuurlijk is thuis niet compleet zonder mijn broertje.
Dan, bedankt voor je levendigheid en plezier. Samen met Marieke en lieve kleine
Mirthe is het nog steeds een geweldig thuis.

Al aardig wat jaren nu heb ik ook een nieuw thuis, met Linda, mijn allerliefste
schat. Het was een pittige tijd, maar met jou heb ik het samen gedaan, altijd ben je
er voor me, weet je wat er moet gebeuren en geef je me net het beetje extra dat ik
nodig heb.

Kenneth Rovers
Warnsveld, November 2011

xvii

Table of Contents

1 INTRODUCTION

1.1
1.2
1.3
1.4
1.5

Trends in embedded systemst
Beamforming as an example
Problem Statementou i et
COMTIDULIONS . . oo v v et et e et e e e
OULTINE .. oo

2 APPLICATION DOMAIN: BEAMFORMING

2.1
2.2
2.3
2.4
2.5

CRATACIETISHICS . . o o v vttt e e e e
Phased array beamforming theory i
Generic beamforming platformo oo
Beamcontrol
CONCIUSION '« . oottt e e e e e

3 TILED RECONFIGURABLE ARCHITECTURES FOR BEAMFORMING

3.1
3.2
3.3
3.4

Requirements from the application domain
AFCRItECTUTE . . oo
Experiments with tiled reconfigurable architectures
Conclusion

4 MODEL-BASED DESIGN OF MULTI-DOMAIN SYSTEMS

4.1 MOtIvation e
4.2 Time, signals, components and systemso
4.3 Theproblem with timet
4.4 Survey of existing tools
4.5 Unified modelling based ontime iiiiiieiennn..
4.6 Design flow ...
4.7 Conclusion
5 UniTi
5.1 Formalisation of thedomains
5.2 Compositiont
5.3 Integration of thedomains
5.4 Simulation....... e
5.5 Model transformationse i
5.6 Conclusiono

O ol W M

10

13
14
17
32
45
56

59
60

63
65
73

75
76
83
85
89
94
96
100

6 CASE STUDY

6.1 SPecification
6.2 CO-dESIgN ..ottt
6.3 Partitioning.........
6.4 Mapping
6.5 Implementationo

6.6 Results

6.7 Conclusion

7 CONCLUSIONS

7.1 Research qUeStionsuuueeuuuinneeiuianeeeennn.
7.2 DASCUSSION . . oot e
7.3 Outlook e

A DATAFLOW

Al Terminology
A2 Dataflowmodel e
A.3 Dataflow analysis
A4 Dataflow execution ...t
A5 Properties

B THE MONTIUM
B.1 Processorlandscape i

B.2 The MONTIUM PFOCESSOT . .« v o u sttt a e et ee e et ieee e e e
B.3 Kernels implemented on the MONTIUMcouuuiuneeon.

ACRONYMS

BIBLIOGRAPHY

LisT OF PUBLICATIONS

Refereed
Non-refereed

149
151
157
170
174
176
178
184

187
190
191
191

193
193
194
194
195
195

197
197
198
201

205

Xix

CHAPTER

Introduction

Embedded systems are everywhere; in your car, your television, your mobile phone,
printer, router, pacemaker, dish washer etc. As such the embedded systems market
is huge and fast growing [41], but as they are embedded into larger systems their
presence remains relatively unnoticed to the general public. Yet embedded systems
are clearly relevant because of their ubiquity, and they are challenging because of
their variety and complexity.

Although existent in a wide variety, there are some common characteristics.
All embedded systems are computer systems interacting with their environment,
i.e. they contain some form of information processing and interaction via sensors
and actuators. The system must continuously monitor and process the signals
coming from the environment and act accordingly, i.e. most embedded systems are
control systems and contain a lot of signal processing. For example, the embedded
system in a refrigerator measures the temperature and based on that controls the
cooling system. In addition, an embedded system comprises multiple domains:
there are elements with continuous dynamic behaviour such as sensors or analogue
filters as well as elements with discrete dynamic behaviour such as digital processors
or specialised digital hardware for e.g. encryption. A system with both continuous
and discrete dynamic behaviour is called a hybrid system. Typically embedded
systems are resource constrained, e.g. they must perform their job with limited
processing power, limited memory, limited area, and with a low energy consumption.
At the same time, embedded systems must be highly reliable and stay within timing
constraints. Therefore, it is important that an embedded system is not only correct,
but also on time. This means (physical) time is an important aspect for embedded
systems.

Overall, most embedded systems are complex and constrained by the interaction
with the environment and a limited amount of resources. To deal with this, an
embedded system is often optimised for a specific application domain, i.e. a range
of applications that have similar characteristics. The complexity of the system is

reduced by limiting the required functionality to that required by the application
domain, and processing elements can be specialised to and optimised for their
common characteristics. On the other hand, as a range of applications must be
supported, the requirements of which can also change over the lifetime of the
embedded system, the system must also have enough flexibility to cope with this. In
other words, an embedded system consists of (specialised) hardware and software.
A second strategy to deal with the complexity of embedded systems is to divide the
system into sub-components, each with well-defined responsibilities and interfaces.
Such components can then be designed independently, re-used for multiple systems
and optimised for their task. The resource requirements, both in integrated circuit
(IC) area and energy consumption, are further reduced by integrating these sub-
components on a system-on-chip (SoC). When such components are connected by
a network-on-chip (NoC), we will call them tiles and the architecture of the SoC is
called a tiled architecture. The architecture is also heterogeneous; as the tiles are
optimised for their task to deal with a limited amount of resources they are not all
the same but differ in functionality, size, efficiency, etc.

In this thesis we will limit the class of applications to streaming applications.
Streaming applications operate on streams of data such as audio or video, i.e. new
data is not available at once but is made available over time. Typically, streaming
applications consist of signal processing operations such as filtering or compression.
For embedded systems, the data-rate of the streaming data is often high requiring
a relatively large amount of communication per computation. As such, the per-
formance must be sufficient to keep up with the (high) data-rates. Therefore, the
architecture of the system is mainly concerned with the flow of data, in contrast
to the flow of control as is more common in general purpose architectures [41].
Relevant characteristics of streaming applications are latency (how long it takes
for data to go through the system), throughput (how much data is processed per
time unit), and real-time constraints that determine the maximum latency and
minimum throughput for a defined data rate such that correct operation of the
system can be guaranteed.

Designing, modelling and verifying embedded systems is a big challenge; the
systems are complex, they comprise multiple domains, they are resource constrained
and they need to provide guarantees. As a consequence, the designer needs knowl-
edge about hardware, software, analogue design, digital design, computer archi-
tecture, control theory, signal processing and their interaction. Especially their
interaction is important: each respective field is well developed but synergy be-
tween the fields is lacking and not well understood in our opinion'. However, this
is essential for current complex multidisciplinary embedded systems. We believe a
unified approach will strengthen the collaboration between the fields, a view shared
by [13, 48, 59, 68]. However, no satisfactory tool or framework supporting this
exists. In this thesis we will propose a design flow and supporting framework, called
Un1Ti, which does offer a unified approach to designing, modelling and simulating
embedded systems.

'Which is understandable considering the amount of knowledge required.

The hardware and the software of embedded system can not be considered in
isolation as they influence each other; they need to be considered simultaneously,
i.e. embedded system design requires a holistic approach. There are efforts to
support both hardware and software in one computation model such as synchronous
languages (e.g. Esterel [10], Lustre [37]) or dataflow (e.g. [57, 65]) or recent efforts
such as SystemC [35]. We will use the dataflow (DF) domain for representing an
application on a tiled architecture.

The hardware/software co-design approach, however, focuses on the digital side
of a design and does not include the analogue side. In this thesis we will take a further
step in integrating design methodologies by including analogue components, i.e.
analogue/digital co-design or mixed signal design. The integration of analogue and
digital components requires support for the continuous-time (CT) domain and the
discrete-time (DT) domain. In addition, if the interaction of an embedded system
with the environment has a significant effect on its operation, the environment
must be included in the model. The need for this is often the case, illustrated by the
recent interest in “cyber-physical” systems, which emphasises this interaction with
the environment [53, 59]. The environment is typically modelled in the CT domain.
So for a unified approach, support is required for the CT, DT and DF domain,
expressing the environment and analogue hardware, the digital hardware and the
software respectively. A single unified domain will not suffice and is not desirable
as we will find that these domains have significantly different interpretations of
model components and interaction. For integration of the domains it is therefore
important to have a precise definition of their interaction (also see [24]). A formal
representation of these domains and their interaction is presented for UN1T1 in the
present work, enabling such integration.

In each of the relevant fields for embedded system design, models aid the
design process and are used for functional verification. Such models provide an
abstraction of relevant properties of a design. Of course, what is considered an
adequate abstraction changes during the design process; at first a basic model is
sufficient but as the design develops more detailed properties and second order
effects of the system under design are needed for verification. In other words, the
design is continuously refined during the design process. Thus, modelling and
simulation of the design in its various stages of development is of great importance.
Uni1T1 is a design flow and framework based on model-based design that supports
design refinements. Model-based design makes the model the centre of the design
process. Using model-based design, a single reference model is iteratively and
incrementally developed and refined, aiming at shortening the design cycles and
making integration part of the design process early on. However, in order to make
this a viable approach, we need to ensure such a refinement is correctness preserving.
Hence, this is supported in UN1Tt with model transformations.

Model transformations are used to provide structured and well-defined refine-
ments. We use formally defined models so that mathematical properties of such
transformation can be proven, ensuring that they are well-defined. Others too plead
for a mathematical basis for system modelling and analysis [42, 48, 59]. Ideally,
automated model transformations could be employed to evaluate many different

designs, so-called design space exploration. In practice, model transformations
are guided by and even performed manually by the designer. By defining models
formally and at a higher abstraction level, we will find that the designer effort for
applying model transformations is reduced.

The time at which events from the environment occur is out of the control of the
embedded system. Yet the response time or reaction time of the embedded system
is typically constrained. In other words, accurate inclusion of time in modelling
is vital, when interfacing with the environment, to verify the behaviour of an
embedded system over time. In computing, physical time is mostly abstracted
away and the time a computation takes is mainly a matter of performance [54].
In real-time systems the reaction time is important for correctness rather than
performance; typically such systems are control systems that react to an event from
the environment and must do so within time constraints [16]. However, time in
real-time systems is the execution time of the processing as response from events
from the environment; it does not include physical time such as the delay of signals
over the network or the CT response of an analogue filter at the input of the system.
Mixed domain simulation tools such as Simulink do support modelling physical
time, but do not support the modelling of execution time with real-time analysis.
In addition, current mixed domain tools model the CT domain by discretising a
global simulation time into small time steps and representing signals as a sequence
of values at these time steps. As a result, such time steps must be small enough for
an accurate representation of the signals. Furthermore, when the time reference of
a value is changed, such as for a time delay, and a value at a time between the time
steps is needed, interpolation is used between available values. The interpolation
approximates the actual value, thereby introducing inaccuracies. Such inaccuracies
are not part of the modelled system but are modelling artefacts introduced by
the modelling tool. These modelling artefacts are not easily distinguishable from
modelling of signal distortions that are present in the physical system such as noise
or non-linearities. In UNITI we support exact modelling of the CT domain as well
as supporting execution time in the DF domain for real-time analysis.

In summary, the design of embedded systems consists of managing complex-
ity by specialising to dedicated functionality, by applying a divide-and-conquer
approach and by employing model-based design. Using a model-based design
flow for designing embedded systems requires a modelling and simulation tool
or framework. Unfortunately, support for multiple-domains, time, mathematical
definitions and model transformations is not well represented in current design
and modelling tools. This thesis on functional model-based design of embedded
systems proposes exactly such an approach: a functional approach, because it is
practical and useful, but also because it has a mathematical basis supported by a
functional language. This approach is called UNITI to emphasise the unification of
the design flow, the unification (and integration) of the CT, DT and DF domains,
and the unification and accurate inclusion of time.

1.1 TRENDS IN EMBEDDED SYSTEMS

We will identify current trends for the design of embedded systems, so as to guide
our work in the coming chapters and evaluate its applicability.

Complexity The complexity of designing embedded systems is increasing as
applications are becoming more demanding. Besides common design criteria of
embedded systems such as price, energy efficiency, real-time requirements and
application specific performance [41], embedded systems must guarantee service
with correct functionality while interaction with the environment is increasing
and becoming more important, making the inputs and outputs of the system less
predictable [59]. This makes complexity the major challenge for embedded system
design.

Model-based design To deal with increasing complexity the use of models and
model-based design is becoming essential [42, 68]. One step in raising the abstrac-
tion level is for example SystemC [35], for which a system is a hardware architecture
plus software. This is a large step forward compared to hardware description lan-
guages such as VHDL which do not support hardware/software co-design. Often
model transformations in model-based design are about code generation [42, 71].
To raise the abstraction level further, multiple domains in a single model sup-
ported by “higher level” model transformations are necessary. In this thesis model
transformations are considered for the whole design process from specification to
implementation.

Multi-domain integration Cost and size reductions for embedded systems are
achieved by integrating digital components on an SoC. A natural next step is integrat-
ing analogue hardware and digital hardware on a single chip, so-called mixed-signal
ICs. For example in the CMOS Beamforming Techniques project® we research the
feasibility of mixed analogue and digital beamforming and a suitable integrated ar-
chitecture on a single (CMOS) chip, which could enable beamforming for consumer
applications because of the higher integration and lower cost. As technology and
integration continues, mixed-signal ICs are expected to become more common for
embedded systems. As explained above, a second trend is the increasing emphasis
on including the environment in the modelling and design process [53, 59].

Modelling time We have already motivated that accurate inclusion of (physical)
time in modelling is vital. As embedded systems are expected to increasingly interact
with the environment, support for modelling time is increasingly important [54].

Adaptivity Applications are becoming more adaptive and dynamic. For exam-
ple, in the latest digital video broadcast for satellite (DVB-S) standard for satellite
broadcasting, adaptive coding and modulation is used on a frame by frame basis

2STW project CMOS Beamforming Techniques (07620) [49]

depending on the signal conditions [29]. Another example is a user running appli-
cations on a mobile phone; at any time a new application can be started, possibly
together with other time critical applications. Embedded systems must be flexible
enough to support adaptivity such as switching functionality or adding functionality
as a result of changing conditions.

Many-cores IC manufacturing is still following Moore’s law, meaning the number
of transistors on a single chip doubles approximately every two years [5]. However,
the extra transistors are used differently. Single core processor performance has
stopped increasing because we hit a limit in the power usage and thereby the
operating frequency, the relative memory latency has become larger, and it has
become difficult to find more parallelism in sequential programs [s]. To still improve
performance and make use of the extra transistors, more processors are combined
on a chip. The number of cores is expected to increase further leading to many-core
architectures (hundreds of cores). For example, Intel already has 12-core processors
and a 8o-core research chip [107].

This work has been performed in the NEST project®. In this project, we are
researching high performance streaming applications on tiled many-core archi-
tectures. In the NEST project research ranges from a system-level design flow,
modelling and analysis to the implementation of tiled architectures and the applica-
tions running on the architecture. Tiled architectures are used to design scalable
systems; by adding tiles the system can perform more processing and/or achieve
a higher performance. In addition tiled architectures provide dependability; if a
tile breaks down during the lifetime of the system it can be replaced by one of the
additional redundant backup tiles, or the performance of the system is reduced
enabling graceful degradation.

Larger applications Until recently, tiled architectures have been mainly used for
multimedia applications [11, 39, 115]. Those applications themselves are becoming
more complex requiring more processing power. However as tiled architectures
are becoming more powerful, also larger applications can be supported. Many
high-performance applications also operate on streams of data and could benefit
from the energy efliciency, scalability and dependability of an embedded system
based on a tiled architecture. For example, in the NEST project we are using medical
imaging and radar processing as case studies. The radar processing case study is
performed in cooperation with Thales Nederland B.V., which specialise in radar
equipment, and will be used as a case study in this thesis.

Flexibility and efficiency There is a trade-off between flexibility and efficiency, as
a more flexible system requires more hardware [43] making it less (energy) efficient.
Flexibility is required to support adaptivity, but also to be able to adapt to future
requirements that are not yet known during the design of the system. In addition, a
more flexible system can be used for a broader class of applications. For example,

3STW project NEST: Netherlands Streaming (10346) [67]

a (hardware and software) platform that supports multiple applications from an
application domain. This way the development costs can be shared among the
applications. On the other hand embedded systems are resource constrained and
efficiency is an important factor of the design.

Hardware costs are becoming less important as the number of transistors on
a chip increases. Therefore embedded systems are becoming more flexible. Yet,
energy efficiency is becoming more important. In our view, reconfigurable systems
nicely balance flexibility and (energy) efficiency and are a good choice for systems
that require a modest amount of flexibility, i.e. functionality that changes every few
hundred clock cycles or less.

1.2 BEAMFORMING AS AN EXAMPLE

Throughout this thesis beamforming applications are used as an example of large
high-performance streaming applications. Beamforming applications use the sig-
nals of multiple antennas to make a directional receiver. This direction can be
electronically controlled by processing the streaming data from the antenna signals.

The design of an embedded system as platform for beamforming applications
will form a good case study as it covers all of the above trends in embedded systems.

A signal from a direction of arrival (DoA) at an angle with an array of antenna
elements will arrive at a slightly different time at each element. The beamforming
application will correct for these time differences so that the antenna signals all add
up coherently. To model and simulate a beamforming system, accurate representa-
tions of the antenna signals need to be generated. In other words, the environment
needs to be included in the model where the source signal experiences a time delay
to each antenna, and these time delays must be modelled accurately.

Beamforming can be performed in multiple stages, a so-called hierarchical
beamformer. One or more of these stages can also be performed in the analogue
domain, giving a hybrid beamformer. For including these analogue beamforming
front-ends in the model, as well as for the environment, we need CT domain support.
Furthermore, beamforming reduces the data rate by combining signals, so analogue
beamforming reduces the amount of digital processing, but digital beamforming is
more flexible. So there is a trade-off, requiring an analogue/digital co-design step
during the design process.

A beamforming application consists of straightforward processing of the an-
tenna signals, yet requires complex control for determining the steering direction.
As the number of antennas can be large, the processing must be performed ef-
ficiently. The steering direction is determined by an adaptive algorithm. In the
general case, the initial DoA of a signal-of-interest is unknown, requiring a search
algorithm. Such an algorithm is computationally complex. When the initial DoA
is found, a tracking algorithm can be used which is less computationally complex.
We will develop a novel tracking algorithm for modulated signals with a constant
modulus and phase, i.e. for phase-shift keying (PSK) modulated signals. This algo-
rithm determines a steering correction per antenna to track the signal-of-interest.

However, such steering corrections are not useable for an hierarchical beamformer.
Therefore, we will develop a second tracking algorithm providing a steering angle,
which is useable for an hierarchical beamformer at a slightly higher computational
complexity but still much less complex than a search algorithm.

Traditionally, for radar and radio astronomy applications, the design of (high-
performance) beamforming systems is driven by functional requirements (e.g.,
resolution, sensitivity, response time) where non-functional requirements (e.g.,
costs, power consumption) are of secondary concern [109]. For that reason, no low-
cost, low-power systems for more than a few antennas are available yet. However,
in areas like wireless communications and satellite receivers, phased array antennas
show great promise but their large scale introduction has been obstructed by the
high costs involved. In this work we present a generic platform for beamforming
applications. The goal is to develop a low-cost, low-power beamforming platform by
using a scalable architecture that is flexible enough to support multiple applications,
such that the same architecture can be reused. In addition, flexibility is used to
switch between an initial searching algorithms and a tracking algorithm. Conven-
tional beamforming architectures typically use a large amount of dedicated central
processing hardware, making the system neither scalable nor power efficient [90].

We postulate a tiled reconfigurable architecture will provide such a scalable and
flexible platform, as they offer high performance (by enabling parallel processing
through multiple processors) and flexibility within a certain application domain
(reconfiguration enables efficient reuse of hardware by reconfiguring parts of an
application). In other words: scalability is achieved by adding tiles, while flexibility,
with a limited reduction in efficiency, is achieved by reconfiguration. Hierarchical
beamforming is used to achieve scalability in the application. To verify the suit-
ability and to explore the consequences of a tiled reconfigurable architecture for
larger applications, the beamforming application is mapped on a small existing
tiled architecture and a larger concept architecture. As expected, the beamforming
application is too large to run on a single tile and must be partitioned over multiple
tiles. Therefore, communication between the parts of the application needs to be ex-
plicit. The DF domain provides a fitting representation for partitioned applications,
as also used in [39, 115]. The DF domain is therefore also required for modelling
and simulation.

1.3 PROBLEM STATEMENT

The topic addressed in this thesis is managing complexity in the design of embedded
systems. Whenever complexity is encountered (e.g. during design, defining an
architecture, implementing the application) the same approach is applied: divide-
and-conquer.

For the design process, we choose for a model-based design approach. Such
an approach needs a modelling and simulation framework that supports a single
model containing multiple domains and model transformations. For the architec-
ture, we choose for a tiled reconfigurable design. Such an architecture supports the

scalability and flexibility needed for a generic platform for the application domain
under consideration. As application case study, a larger application is considered
requiring modelling of the environment and containing analogue and digital com-
ponents. This larger application must be partitioned over and implemented on the
proposed tiled architecture. This requires explicitly separating computation and
communication, and parallelisation of the application.

This leads us to the following research questions and propositions:

« What is a suitable design flow for embedded systems based on a divide-and-
conquer approach? A division based on model transformations is needed
that requires transformations that are generic, well-defined and correctness
preserving.

o What is required from a modelling and simulation framework to support this
design flow? The environment, the architecture and the application are to be
modelled, requiring accurate and efficient support for multiple domains and
their interaction.

o Are tiled reconfigurable architectures suitable for large high-performance
applications? Such applications must be defined in such a way that they can
be parallelised and partitioned for a tiled architecture.

1.4 CONTRIBUTIONS

The main contribution of this thesis is a functional model-based design approach
for designing, modelling and simulating embedded systems based on a sound math-
ematical foundation. We will limit our scope to an application domain requiring
high-performance streaming processing, yet propose a hierarchical scalable and
flexible platform to support multiple applications in this domain. We will then
explore the consequences of mapping such an application onto a SoC with a tiled
architecture. As a result from the requirements of the application and architecture,
we propose a design flow and framework which uses model-transformations for
co-design and partitioning.

Specifically the contributions of this thesis are:

« A design, modelling and simulation framework called Un1T1 is developed
supporting multi-domain models, model transformations and exact mod-
elling of time [KCR:10] (chapter 5). UN1T1 provides a formal, unified, in-
tegrated and transformational environment for the design of embedded
systems. It is based on function composition of components, where compo-
nents represent signal transformations. We provide a formalisation of the CT,
DT and DF domains in UN1T1, and unified composition of mixed-domain
models [KCR:9]. To achieve this, dataflow models are re-defined as DF
components and signals. DF components still adhere to dataflow execution
semantics, but in addition can now be composed with CT and DT compo-
nents [KCR:10]. As a consequence, time in the CT or DT domain determines
the time in the DF domain and gives the execution time of dataflow processes
meaning during simulation instead of only during analysis.

o A design flow that raises the abstraction level to include the environment,
analogue/digital co-design, and an executable specification of the hardware
and software [KCR:3, KCR: 10] (chapter 4). The design flow proposes a
co-design step as model transformation from the specification to a model in-
cluding the environment, the architecture and the applications. Furthermore,
it proposes a partitioning step as model transformation for parallelising the
application, and a mapping and implementation step.

« Ananalysis of modelling time transformations in hybrid systems [KCR:8]
(chapter 4). We identify different notions of time in modelling. Current tools
coalesce these notions of time into a single global notion of time. As a result,
the time of continuous signals is discretised during simulation, causing ap-
proximation errors when for example time delays or multi-rate systems are
simulated. This is because for such systems the exact time at which the value
of a continuous signal is needed may not match with the global discretised
simulation time.

« The design of an hierarchical beamforming platform suitable for multiple
beamforming applications [KCR:12] (chapter 2). A tiled reconfigurable archi-
tecture is explored as architecture for the platform as it provides scalability
and flexibility [KCR:6, KCR: 11] (chapter 3). A larger application such as
beamforming requires the application to be divided over the tiles. Different
implementations of beamforming applications are evaluated with respect
to their required computation and communication. The beamforming ap-
plication on a tiled reconfigurable architecture is used as a case study for
UniTr [KCR:6, KCR: 9, KCR: 10, KCR: 11] (chapter 6).

« The application and analysis of two novel beamcontrol algorithms for
this platform, for tracking signals-of-interest with low computational com-
plexity [KCR:4, KCR: 7] (chapter 2). The first algorithm allows low-cost
tracking of M-PSK modulated signal when the initial DoA of the signal is
known (by first running a search algorithm and reconfiguring), but it is
not suitable for hierarchical systems. Therefore an alternative algorithm is
developed that is suitable, but has a higher computational cost.

1.5 OUTLINE

In this thesis the first step in managing complexity for the design of embedded
systems is specialisation. The application domain of beamforming applications is
presented in chapter 2. As result we will find that a generic platform for beamform-
ing applications must be scalable and flexible.

In chapter 3, reconfigurable tiled architectures are explored for beamforming
applications on the premise that scalability is provided by tiles and flexibility by
reconfigurability.

Following from the discussion of the application domain and architecture we
find that functional components of a beamforming application are divided over
a representation of the environment, the hardware (mainly architecture) and the

software (mainly application), and that the application is divided over tiles of the
architecture using DF models. This leads to a design flow that supports multi-
ple domains, time and model transformations in chapter 4. A survey of existing
tools shows that such a tool is not available. Therefore we propose UNITT in chap-
ter 5; a multi-domain transformational design flow and modelling and simulation
framework.

In chapter 6 the results of the previous chapters are combined in a case study.
An embedded system for beamforming is designed from specification to implemen-
tation and the UNITI design flow and framework is evaluated.

Finally, we will present the conclusions, and we will discuss future work, in
chapter 7.

11

CHAPTER

Application domain: beamforming

ABSTRACT - Many embedded systems perform signal processing on streaming
data from the environment. One such application is a beamforming application,
which will form a good case study for the design of embedded systems. In this
chapter we will present the application domain characteristics and basic theory of
beamforming applications. We will then develop a generic beamforming platform.
Such a platform must be (energy) efficient, scalable and flexible to be cost-effective.
This is achieved with a hierarchical and hybrid design. In addition, we present two
new beamcontrol algorithms for tracking signals with a phased array beamforming
system at a low computational cost.

Embedded systems are specialised for a specific application domain in order to
reduce their complexity and improve their efficiency by requiring embedded systems
to do less, but do it well. A range of applications that have similar characteristics
are together called an application domain. Throughout this thesis we will use the
application domain of phased array beamforming applications as an example.

Phased array beamforming systems use multiple antennas in an array to make
a directional receiver. In essence, a phased array is performing a spatial filter that
selects the signal from the direction of interest. This direction can be electronically
controlled, thereby making a phased array system very suitable for situations in
which the direction of the signal is continuously changing or where signals from
multiple directions need to be selected simultaneously.

A beamforming application is a high-performance streaming signal process-
ing application; as an array of antennas is used, each continuously transmitting
or receiving a signal, phased array systems involve a lot of signal processing on
streaming data. Yet, phased array beamforming is typically part of a larger system,

Parts of this chapter have been published in [KCR:4], [KCR:7] and [KCR:12].

14

such as a radar system, that poses resource constraints, e.g. in area, processing
capacity and power. In addition, there are timing constraints resulting from the
continuous stream of data: typically no data may be lost or the reaction time is
bounded. Beamforming systems also interact with the environment by sending
and/or receiving signals. All these characteristics together make a phased array
system a good case study for the design of embedded systems.

Traditionally, phased arrays have been used for radar systems to detect and track
moving targets. Another common use is for radio astronomy, to correct for the
movement of the earth but also because very selective filtering can be performed in
multiple directions simultaneously. Their requirements normally dictate a dedicated
design. Costs have withheld the use of phased arrays for other applications, but
one can imagine the usefulness in consumer applications, such as a flexible satellite
receiver or for mobile and wireless communication.

In this chapter we will propose a generic platform for beamforming applications.
By providing a flexible, scalable and efficient design, the same platform can be re-
used. This lowers the cost of the platform because the design costs are shared and
the production volume is higher, thereby possibly enabling phased array systems for
consumer applications. To achieve a scalable and modular design, the beamformer
is hierarchical: beamforming is performed in multiple stages. To save further
costs, part of the beamforming stages are performed in the analogue domain with
dedicated hardware, resulting in a hybrid beamformer.

A beamforming platform requires an (adaptive) algorithm to search or track a
signal-of-interest. We will present an overview of beamcontrol algorithms and find
that search algorithms are computationally expensive. Yet, we require a beamcon-
trol algorithm with low computational cost so that limited additional hardware is
required. Therefore we present an equalisation algorithm for PSK modulated signals
which we apply as an adaptive beam-control algorithm with low computational cost.
Furthermore, based on this adaptive beamcontrol algorithm, an algorithm is pre-
sented that, unlike existing algorithms, is also useful for hierarchical beamforming
systems.

This chapter is organised as follows. First we present an overview of the char-
acteristics of the beamforming application domain in section 2.1. Thereafter, in
section 2.2, we will present relevant beamforming theory. Next, we will discuss the
system design of a hierarchical hybrid beamforming system, proposed as generic
beamforming platform. Section 2.4 gives an overview of adaptive algorithm classes
for beamcontrol and presents two novel tracking algorithms, followed by a conclu-
sion.

2.1 CHARACTERISTICS

In this section a short overview of the areas relevant to phased array beamforming
systems is given. This will also be useful for later chapters on architectures for and
design of embedded systems.

2.1.1 Signal processing

A signal, in the sense of signal processing, is a representation of a physical quantity
that varies with time or space, i.e. signals are functions of the independent variable
time and/or space. Signals encode and transfer information. On a single channel,
information can be encoded in the amplitude, frequency and/or phase of a signal.
For example, a speech signal encodes phonetic symbols as well as emphasis etc. as
sections of varying frequency and amplitude.

Multiplexing information into one signal is used to send more information over
a shared medium or channel. Information can be multiplexed over time, frequency
and space or a combination of these.

Signals are generated by sources and consumed by sinks. A system, subsystem
or component responds to or transforms signals, i.e. it performs processing on the
signal. Signal processing can be performed in both the analogue and the digital
domain. Digital signal processing is often preferred because it is more flexible
and/or has better accuracy. By continuous signals, continuous-time signals are
meant [93]. Likewise, discrete signals are defined for discrete-time (and may well
have continuous values). A digital signal is a discrete-valued discrete-time signal.

2.1.2 Streaming data

A stream is an infinite sequence of data. Signal processing systems often operate
on streaming data, because an input signal (as function of time) that is digitised
can be represented as an infinite stream of data; the samples of the signal. Thus, a
digital signal can be represented as streaming data.

The advantage of a stream representation for signal processing applications is
that it becomes easier to formally analyse and verify the applications [53, 57]. It
can be guaranteed that the application is functionally correct and what kind of
throughput and latency it achieves. Throughput for streams and signal processing is
defined as the (average) rate that elements from the stream are processed. Latency
is defined as the time delay of an element when being processed.

There are two common representations of streaming data [57]. The first is as
an infinite list; the first element of the list is the current data and the remainder of
the list are the future values. Signal processing operations are performed on the
list, i.e the inputs and outputs of an operation are lists. Laziness, i.e. values are only
calculated or retrieved when used, ensures that the whole stream does not need to
be available when used by the operation. A stream as a list can also be represented
as a pair of the current value and a function to get future values, i.e. a linked list.

The second representation of a stream is a representation as a channel. A channel
is an unbounded first-in first-out (FIFO) buffer. New elements are added to the
channel, thereby modifying the channel, and signal processing operations consume
elements from the channel. An advantage of the channel model is that signal
processing operates on single elements at a time, which fits the conceptual execution
of the signal processing operation, as it progresses over time. A disadvantage is that
a channel does not match the semantics of a discrete time signal, i.e. a sequence of

15

16

samples over time. The channel represents a container where samples are put in or
taken out. As such, it is a lower abstraction concerned with memory management.

We propose a different representation: a stream is data that changes over time. It
is therefore close to a DT signal: instead of consisting of samples, the signal consists
of data. In fact, we consider data (elements) to be equivalent to samples, i.e. data is
represented as a (large) number. In other words, a stream is a value that changes
over time. A signal processing operation is just an operation on a value at a certain
time. As a consequence its output is also a value that changes over time or a stream.
An operation on a stream has no notion of time, only of the ordering of data and
the next element to process. It can have state, i.e. its output depends on its history
of inputs. The state and output of an operation change with a new input value,
irrelevant at which time this is. As such, time is defined at a higher level, and is
irrelevant for (the correctness of) the signal processing operation. Summarising,
the same representation of values that change over time is used for DT signals and
streams. We will come back to this in chapter 4.

In synchronous languages such as Lustre [37], Lucid, [18], Esterel [10] or Sig-
nal [52], each stream is associated with a (global) “clock” The next element of the
stream models a “clock tick”. With the proposed representation, the value of streams
at a certain time does not necessarily represent the same (global) “current” time or
clock, i.e. time is locally defined and relative.

2.1.3 Hybrid systems

The dynamic behaviour of a system is the time-varying evolution of the system. If
the behaviour of such a dynamic system has both continuously changing elements
as well as discrete changes, it is called a hybrid system. As mentioned, embedded
systems interact with their environment, which is typically a continuous system,
while most of the processing is typically in the discrete domain. Therefore, an
embedded system is often a hybrid system.

A hybrid system thus includes the CT domain and the DT domain. A domain is
a meta-model that formalises what entities or components in the domain represent
and how they interact.

A system that responds to dynamic behaviour from the environment is called
a reactive system. Signal changes usually indicate events which the system must
react to. A system that must react within a certain time (before its deadline),
while it has no control over when events occur, is called a real-time system. For
real-time (hybrid) systems it is especially important that throughput and latency
constraints are met, as missing a deadline can have severe consequences for the
system’s operation. Models of the system are used to analyse the system’s behaviour
and provide guarantees that constraints can be met. As such, a model, based on
streams, is often used [57].

When modelling hybrid systems, the dynamic behaviour of the environment
must be included in the model to verify the dynamic behaviour of the system’s
interaction with the environment. The signal generation part models the aspects of
the environment that are relevant to generate the input signal of the system. When

actuators are controlled by the system, they might influence the input signal, and
thus the signal generation model, thereby forming a closed loop system.

2.1.4 Adaptive algorithms

Adaptive algorithms (automatically) adapt or adjust to the characteristics of an input
signal [3]. As such they are similar to closed-loop control systems; the algorithm
compares the input and the output of an operation with an expected result and
changes the operation on the input signals accordingly. A feedback loop is thus
created by the adaptive changes, or corrections, to the operation on the input signals.

Typical aspects of control engineering and control theory are also relevant here,
such as:

o stability ensures the controlled response converges to the intended effect and

stays within bounds,

o responsiveness is the time it takes to reach the intended effect,

o overshoot refers to a controlled signal exceeding its intended value.

Often the feedback control does not need to run at the same speed as the rest
of the signal processing because the dynamic behaviour is slower than the rate of
information. In that case the signals for the control and feedback can be decimated,
i.e. their rate is reduced.

2.2 PHASED ARRAY BEAMFORMING THEORY

Beamforming, as the name implies, is about forming an electromagnetic or acoustic
beam into a certain direction, i.e. it makes a transceiver directional. An (mechanical)
example is a light-beam from a spotlight. Exploiting the directivity of a transceiver is
an obvious way of improving the performance of a radio frequency (RF) system. This
is because less energy is wasted compared with sending the signal to or receiving
from all directions. Sending only to the direction of the receiver also reduces
distortion to other receivers. Receiving only from the direction of the transmitter
increases the signal-to-noise ratio (SNR) of the receivers. This larger SNR can be
exploited for energy savings, higher throughput, or less sensitive (simpler) systems,
among others. In this thesis we will mainly focus on receiving systems.

Directivity can be achieved by using a directional antenna, such as a dish antenna
(figure 2.1), or by using multiple antennas in an array as in phased array systems
(figure 2.2). Some options for directional antennas are illustrated in table 2.1. Omni-
directional isotropic antennas are hypothetical antennas with an equal directivity in
all directions. Dish and aperture antennas achieve directivity by their shape, while
array antennas achieve directivity by combining signals from the array which is
discussed in more detail below.

Beamsteering (BS) refers to changing the direction of the formed beam. Beam-
steering can be achieved mechanically by moving the antenna, or by changing the
path length from each antenna to the location where the signals are combined in
case of a phased array. Practical reasons allow only a discrete number of different

17

QQQ CHAPTER 2. APPLICATION DOMAIN: BEAMFORMING QQQ

FIGURE 2.1: Directivity by dish antennas FIGURE 2.2: Phased array

TABLE 2.1: Beamsteering for different antenna options

Antenna Steering

Directional antenna

Omni-directional isotropic -
Parabolic reflector (dish) Mechanical
Aperture Mechanical

Multi-antenna transceivers

Array
Fixed plane Mechanical
Phased array
Selectable path length Mechanical/Electrical
Delay or phase correction Electrical
Smart antenna
Switched beam Electrical
Adaptive array Electrical

path lengths for the mechanical beamsteering option (for each path length a cable
of a different length is needed) [109]. With electrical beamsteering, this restriction
can be relaxed, allowing faster and more flexible beamsteering. Controlling the
direction of maximum sensitivity of the beam is called beamcontrol (BC).

Following [33], smart antennas refer to systems which determine the DoA of a
signal by using signal processing. Switched beam systems choose between a number
of pre-determined beams, while adaptive arrays allow for complete flexibility in
steering the beam (using adaptive algorithms).

2.2.1 Beamforming

In this section we will provide a basic outline of the principle of beamforming and
relevant terminology.

FIGURE 2.3: Interference pattern FIGURE 2.4: Wavefront received by multiple
antennas in a phased array

Interference Beamforming is based on the principle of interference. Interference
is the pattern resulting from the addition of two or more (partly) correlated waves.
A famous example is the double-slit experiment in which a light beam is blocked
except for two small slits. The light after the slit is scattered over all directions, i.e. it
is comparable to an omnidirectional antenna. As a result the two scattered light
waves interfere and the resulting pattern after the slit has a varying intensity as
illustrated in figure 2.3. At a location where the light waves from each slit arrive
in-phase, the intensity is at its maximum. This is called constructive interference. At
alocation where the light waves are exactly out-of-phase, the intensity is at its lowest.
This is called destructive interference. The same can be accomplished electronically
with any two kind of signals by varying phase delays between the signals.

Array A phased array combines the signals from two or more antennas; the array.
Whether the waves add up depends on the location of the antennas. For a uniform
linear array (ULA), the antennas are located on a straight line with uniform spacing
(see figure 2.5). It is therefore a 1-dimensional (1D) array. The uniform spacing
simplifies a lot of the mathematics [90, 109].

A ULA is only directional in one dimension, the azimuth direction for a ULA
on the x-axis as in figure 2.5. In the dimension orthogonal to this, i.e. in the
elevation directions, the array has no directivity, i.e. it is omni-directional. To
achieve directivity in two dimensions, a 2-dimensional (2D) array is needed. A
common 2D array is a rectangular planar array, for which the antennas are located
in a uniform grid (as in figure 2.6).

In general, the antennas can be placed anywhere in a 3-dimensional (3D) space.
For such arrays, there is no regularity that can be exploited to simplify the mathe-
matics and the signal from each antenna must be calculated individually.

Phased array systems often use a coordinate system (7, «, y) slightly different
from a spherical coordinate system (r, 0, ¢). The array is located at the origin of
the coordinate system. The distance from the origin is still the range, but azimuth
(a) is a clock-wise “horizontal” angle (instead of counter-clockwise) and instead of
an inclination angle from the zenith direction, an elevation (y) from the horizon is
used. The azimuth («) and elevation (y) are shown in figure 2.5

19

20

FIGURE 2.5: Uniform linear array FIGURE 2.6: Rectangular planar array

Planar wavefront Assume a single omni-directional wave source, emitting a
spherical waveform s in time and space:

s(t,1) :A~cos(wt— 2{1)

with A the amplitude, w the frequency, A the wave length, ¢ time and / the path
length (distance) from the source. At a large distance, in the far field region, the
wavefront of this source arrives almost at the same time at two relatively closely
placed receivers (antennas) with their plane perpendicular to the direction of the
source, i.e. the path length from the source to each antenna is almost the same. Thus,
if we neglect this small error, the wavefront arriving at the receivers can be seen as
planar and the two signals add up constructively. Note that we do not consider the
polarisation of the wave in this thesis.

Directivity The directivity of an array is dependent on the incident angle (DoA)
of the wavefront. If the wavefront arrives at an angle incident to the array (9 in
figure 2.4) the wavefront arrives at different times at distinct antennas, because of
the path length differences between the antennas. This is illustrated in figure 2.4. If
the antennas are placed a distance d apart, and if the DoA of the wavefront is at an
angle 9, the wavefront travels a distance

Al =d -sin(9)
further to the next antenna. This translates in a time delay

Al _d-sin(9)
c ¢

At =

between the received signals at the antennas (where c is the propagation speed of
radio waves). Depending on the frequency of the wave, this time delay results in a
phase shift (A¢ = w - At), giving rise to the term “phased array”. In the general case
the path length between a chosen origin and an antenna elementat p = (x, y, z) fora

[T ‘ T T T ‘ ‘Mai‘n‘b‘eahl‘ ‘ \Béal\/r‘l“ﬁl\id\t}l\ ‘ T T T T T T T T T T]
o k- _
| Grating lobe A ,
ng\‘ Side Qfs\ : i
a -12 i
=
g
<
80 -24
=
~
36 Z
‘ | 1 1 ‘ 1 | ‘ | 1 ‘ 1 1 | ‘ 1 1 1 ‘ 1
o

-80 -60 -40 -20 20 40 60 8o

incident angle (°)

FIGURE 2.7: 2D radiation pattern of an 8-element 1D ULA

source from d = (7, a, y) is (calculated with the help of a coordinate transformation
of d):

= =5l = (xa=) a3+ (a2
Al:f;.-u}:xp~—xd+yp~—yd+zp~—zd
x4 = sin (&) - cos (y)
ya = cos () -cos (1)
zg =sin(y)

where [is the total path length and Al is the path length difference with respect to
the path length to the origin, determined by the projection of p on the unit vector
in the direction of d.

By correcting the path length differences between the antennas, we can influence
the directivity of the array.

Radiation pattern Phased array beamforming systems use multiple antennas in

an array to make a directional receiver. The directional sensitivity of the array, i.e.

the gain of the array versus the incident angle, is called a radiation pattern or beam
pattern. A radiation pattern for an 8-element ULA is shown in figure 2.7.

A direction of maximum sensitivity is called a beam because of its shape. The
(half-power) beamwidth (HPBW) is the angular range between both sides of the
beam where the gain is half (-3 dB) of its maximum. For a ULA it can be estimated

by [38]:

HPBW (9;) =~ arcsin (sin (99) + 0.4429Nid)

21

22

gain (dB)

4 time (ms)

-80 -60 40 20 o, 40 60 g °
0

angle (°)

FIGURE 2.8: 3D radiation pattern o .
FIGURE 2.9: 2D radiation pattern over time

with 9y the steering angle of the beam. The largest beam is called the main beam. If
there is more than one beam with a maximum gain, the one we are interested in is
the main beam and the others are called grating lobes. The remaining beams are
called side lobes. There are also parts where the gain is very small, i.e. a signal from
that direction is almost completely attenuated. Those directions are called nulls in
the radiation pattern. The inter-null beamwidth (INBW) for a ULA is given by [3]:

A A
INBW (9) = arcsin (sm () + dN) arcsin (sm (9 dN)
Typically, the intent is to steer the main beam in the direction of the signal
of interest and to place nulls in the direction of interferers. Note that the HPBW
and INBW decrease with an increasing number of antennas N and increase with
the incident angle. As the incident angle increases, the area of the wavefront that
reaches an antenna (the aperture) becomes less (also see figure 2.4). A smaller
(effective) area results in a larger HPBW and INBW, i.e. a wider main beam.
Figure 2.7 shows a 2D radiation pattern in a Cartesian coordinate system. Al-
ternatively we can show a 3D radiation pattern in a spherical coordinate system as
shown in figure 2.8. Note that there are no grating lobes in this radiation pattern. If
we are steering the beam, it is useful to show how the 2D radiation pattern changes
over time. This is achieved by making time the third dimension of the plot as shown
in figure 2.9.

Element factor In the previous section we assumed that the antennas radiate
or receive the signal from a point source with equal sensitivity, no matter which
direction the signal comes from. Such an antenna is called an isotropic radiator
and is illustrated in figure 2.10. The gain of an isotropic radiator is defined as:

Gg (a,y) =1

A coherent isotropic radiator is a hypothetical device and is not physically realis-
able [109]. However, it is useful as an ideal antenna that does not influence the
directivity of the array.

FIGURE 2.10: sphere radiation pattern FIGURE 2.11: torus radiation pattern

A physically realisable and often used antenna is a half-wave dipole antenna. The
dipole antenna has a uniform gain in azimuth and a half cosine wave cross-section
in elevation, resulting in a torus shaped element factor (shown in figure 2.11):

G (@) = |cos (y)]

Array factor The array factor is the directivity resulting from the phased array

including the applied path length corrections (and assuming isotropic elements).
The radiation pattern of figure 2.7 shows an array factor without any corrections.

The maximum signal amplitude is received for a wavefront perpendicular to the
array, thus if we correct the path length difference between the antennas for the
angle we are interested in, it is as if the wavefront is perpendicular to the array and

the maximum signal amplitude is received when a signal is incident from that angle.

We can determine the sensitivity of an array with equidistant elements into each
direction « by calculating the array factor [90, 105, 109]:

N
Ga(a) =3 ol (3 (N=i)d sin(a)+4:(90)) (2.1)

i=1

with N the number of elements, d the distance between elements, 1, the wavelength
in free space and ¢; the applied correction. In general the array factor is:

N amoalsac
GA((X) _ Ze]E(AlﬁAc,)

i=1

with Al; the path length difference and Ac; the correction for antenna i.
Typically, the antennas are placed a distance d = /2 apart, where 1 is the
wavelength of the received signal, as for larger distances grating lobes appear as
shown in figure 2.7 with d = 3}/4. The distance (1D array) or area (2D array)
between the outermost elements is the aperture of the array. For a larger aperture

the beamwidth becomes smaller, so a smaller distance than d = /2 is not preferred.

23

T T T T T T T T T T T T T T T T ‘ T T T ‘ T T T ‘ T T T T
i element factor ——
<= ay factor - ----

\ "y = 8 array ro-eee--
N = 4 radiation pattern -

3

= 12 & —

E ¥

=

5]

80 -24 |

-36 ; 11 :
H/ ‘ "“\ Il Il ‘ Il \“\: Il ‘ Il h’ Il ‘ \; Il Il ‘ Il Il b: ‘ Il u Il ‘ Il 'H‘\ Il ‘ Il Il \‘.‘ ‘ \\\
-80 -60 -40 -20 0o 20 40 60 8o
angle (°)

FIGURE 2.12: 2D radiation pattern

The consequence is that for a larger array, i.e. an array with more elements, the
beamwidth becomes smaller and the antenna array becomes more selective. This is
illustrated in figure 2.12 for N = 4 antennas and N = 8 antennas.

The radiation pattern consists of an element factor and an array factor. As
the element factor is only a directional gain, if all elements are equal, we can sim-
ply multiply its gain with the array factor gain to get the radiation pattern (see
figure 2.12):

G(a,y) =Ge(a,y) Ga(a,y)

with Gg the element factor and G, the array factor. For simplicity we will assume
an isotropic antenna for the rest of the thesis.

Amplitude and phase taper An amplitude taper is a vector of amplitude cor-
rections (one for each antenna) and is used for controlling the beamshape. It is
comparable to windows for finite impulse response (FIR) filters or fast Fourier
transforms (FFTs). For example, we can lower the sidelobes or position a null at the
cost of a larger beamwidth. As an example, a triangular amplitude taper is applied
for the dashed radiation pattern in figure 2.13, indeed resulting in lowered sidelobes
and a widened beam.

From equation (2.1) we find that the phase difference can be corrected by setting
$:(9) to —i—’; (N - i)dsin(9y) for steering angle 9,. Thus, the vector with phase
correction for a ULA, also called a steering vector, is linearly increasing with i.
Therefore such a steering vector is called a linear phase taper (LPT). A phase taper
is used for beamsteering. Figure 2.13 shows a main beam steered to 9, = —30° and
to 9y = 10° for the dashed radiation pattern.

T T T T T T T T T T T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T T
5 =38, 0., = -30, Uniform —— 1
o - N =38, 9f\= 10, Triangular - ---- I
a -12 j‘
Z i
= L
s
80 -24
_36 —
-80 -60 -40 -20 [} 20 40 60 8o
angle (°)

FIGURE 2.13: 2D radiation pattern

Friis transmission equation There are a number of components in a phased
array system that have directional gain. For example we have the transmitting
antenna, the receiving antenna, the channel between them and the array factor, all
contributing a directional gain and possible a phase transfer function. Representing
the gain and phase factor as a complex number we can combine their effects by
simply multiplying them.

The ratio between the transmitted power and the received power, in which
these directional gain factors are included, is given by the radio equation or Friis
equation [109]:

Py

2 -Gr-Gr-G

Py T-Gc-Gr
1\

Ge = | =

¢ (4711‘)

with Gt the transmitter element factor, Gy the receiver element factor, G¢ the
channel factor and r the range. The radio equation is valid under idealised conditions
(aligned antennas, small bandwidth, no multi-path effects) in free space.

We extend the radio equation to include the path length delay (2791/1,) of the
channel as a function of the DoA:

G(r,a,y) =Gr(a,y)-Ge(r,a,y)-Gr(a,y)

A 2 221
Ge(r,a,y) = (—) e/ A

4nr

This represents the transfer function from a source to a single antenna. Later we
will use this to combine the signals at a receiver antenna from multiple sources and
to apply a delay correction for the path length difference between each source and
antenna element of the receiver.

25

26

2.2.2 Beamsteering

In phased arrays there is a path length difference in the path from a source to the
different antennas of the array. This path length difference results in time delay
between the antenna signals:

Al (r,a,y)
c

At(r,a,p) =

For beamsteering we correct the time delay in a certain direction (&, yo) so that
signals from that direction add up coherently:

_Al ((Xo,)’o)
C

At, =

Consider a delay function D;(s), that delays a signal s by §, with §; = At, ;. The
beamformer is then defined as:

y= ZD&(S,’)

If the signal is a narrowband signal, this time delay can be approximated with a
phase shift:
A¢ = wWo - Atc

hence by applying the inverse phase shift, the time delay is corrected. A gain and
phase shift is typically represented as a weight w;. A phase-shift based beamformer
applies a correction weight w; to each antenna signal s; and sums the results:

N N '
y:ZW?'Si:Zai'eij(pi'Si
i i

with w} the complex conjugate of w;. This can also be represented using as a matrix
multiplication of a weight vector or steering vector w and a vector of the antenna
signals s:
y=w.§
with !’ the Hermitian or conjugate transpose of .
For frequencies slightly different than w the error € is:

€g = (wo + Aw) At — woAt = AwAt

A better approximation can be achieved if we apply different phase shifts for different
frequencies.

Multiple beams can be formed by using the same antenna signals with different
delays or different steering vectors, i.e. we use multiple beamformers on the same
input signal. Each beamformer has its own radiation pattern, which are in the
general case independent (see below). Therefore, a phased array is very flexible:

with the same array additional beams can be formed and steered, only at the cost of
additional hardware or processing.

There are different options for achieving a time delay or phase shift, which we
will discuss next. In practice all options approximate a time delay (or path length)
to some degree, resulting in a large number of beamformer structures which have
different characteristics. They differ in support for narrowband or wideband signals,
accuracy and complexity [3, 33, 50].

2.2.2.1 Time delay

As the time delay exactly corrects the path length difference experienced by the
wavefront, it is not dependent on the (frequency of the) transmitted signal. There-
fore, any source signal, including wideband signals, can be used. The disadvantage
is that implementation is difficult. Note that the time delay can be arbitrary small
as the incident angle becomes closer to 0°. The largest time delay is caused by the
two antennas which are the furthest away and therefore scales with the array size.
Next, we will discuss three options for implementation.

Physical delay The time delay between antennas can be corrected for by using
different path lengths between the antennas and the location where the signals
are added. For beamsteering, these path lengths must be changeable. Therefore,
many different routes with different path length must be implemented and switched
between. This makes implementation difficult and costly.

Time shifted sampling Instead of physically changing the path length, one can
also adjust the sample moment of each analogue-to-digital converter (ADC), so-
called time shifted sampling. However, as part of the beamforming is performed
by the ADCs of which there is only one per antenna signal, only a single beam is
supported. Furthermore, time-shifted sampling ADCs are not standard and require
fine-grained control of the delay.

Buffering and interpolation A different option is to use buffers to temporarily
store samples. Such an implementation, as with changeable path lengths, can only
implement a discrete set of time delays. We can approximate an arbitrary time
delay by using interpolation between available samples or by using sampling rate
conversion techniques [77]. However, for small delays, a time approximation by
interpolation is complex and difficult [51, 77, 103]. In general, the higher the sample
rate the better the delay approximation. One choice for interpolation is to use an all-
pass filter with a linear group delay [83] (which must be tuneable for steering). This
filter can be in the analog domain or the digital domain. In the digital domain, a FIR
filter can be used, which consists of complex multiplications followed by summing
the results. A FIR filter corresponds to performing a truncated convolution.

27

FIGURE 2.14: FFT based beamforming in elevation

2.2.2.2 Phase shift

A phase shift can be used to approximate a time delay. A time delay is independent
of the frequency, but the phase shift resulting from a time delay does change over
frequency. As found before, a fixed phase-shift equals a time delay only at a single
frequency and the time delay approximation error becomes larger for frequencies
further away. A phase-shift approximation is therefore only suitable for narrowband
signals. However, its implementation is simpler; we will discuss two options, both
use a complex representation of signals requiring a Hilbert transform.

Complex multiplication When using a complex representation of signals, a
phase shift is simply a complex multiplication:

4. eI gihé

Phase shift based beamforming for N antennas consist of N complex multiplications
with the steering vector and summing the results, giving a single beam (pattern).
For multiple beams, we just repeat the process with different steering vectors.

Spatial FFT An FFT can be seen as performing N parallel convolutions or filters
with the same filter shape. As such, an FFT over the antenna samples performs
a spatial filter, resulting in N beams. These beams have a fixed relative position
and equal shape, i.e. the main beams are non-overlapping as with FFT bins in the
frequency domain. However, they can be calculated in O(Nlog(N)) instead of
O(N?) for N “normal” beams.

As the main beams are non-overlapping, with each top of a main beam exactly
at the position of a null for all other beams, the resulting radiation pattern resembles
a number of beams stacked next to each other, a so-called fan-of-beams. This is
illustrated by the lighter beams in figure 2.14. A fan-of-beams is typically used for
searching or scanning. The darker beams are single beams used for tracking.

The window (amplitude taper) used for the FFT determines the shape that the
signal is convolved with. Without a window (meaning a rectangular window), this
filter shape is a sinc function.

In order to differentiate between performing an FFT on a sequence of signals
in time, we will refer to this method as a spatial FFT.

Note that the complex multiplication and spatial FFT can operate on real input
signals, but in that case the result of positive angles overlap with the mirrored
negative angles [83]. To differentiate between those, a complex signal must be used.

2.2.2.3 Hilbert transform

To differentiate between positive and negative angles, the phase-shift and FFT based
beamformers use complex antenna signals. A complex number is an ordered pair,
which can be seen as a coordinate pair in a complex plane. Euler’s formula relates a
complex number to an orthogonal sine and a cosine pair. A complex signal can thus
be represented by an in-phase version and a 90° phase shifted quadrature version
(see [80]).

However, the antenna signals are real. To get a complex representation, a Hilbert
transform, which corresponds to a 90° phase shift for all frequencies, is performed
on the antenna signals to get the quadrature signal. Together with the original
(in-phase) signal, this gives a complex antenna signal.

A Hilbert transform can be performed with a quadrature mixer (typically in the
analogue domain as we often need analogue frequency conversion anyway) or with
a filter (typically in the digital domain for flexibility, stability and an equal power in
both paths). For an accurate phase shift over all frequencies the filter order must be
high, making a Hilbert filter computationally expensive. Therefore a quadrature
mixer is to be preferred, at the cost of twice as many ADCs, albeit at half the sample
rate [83]. At the same time, it is difficult to make accurate wide-band quadrature
mixers; resulting phase errors are often a reason to employ digital implementations.

2.2.3 Delay at baseband

A typical beamforming system contains (frequency) down-conversion of the RF
signal from the channel to a more manageable intermediate frequency (IF), i.e.
baseband, through mixing with a local oscillator (LO). We will discuss how the
time delay (and phase shift) between the signals from the channel translates to an
equivalent delay at baseband.

If the antennas are at a distance d = }/2, the phase difference between two
adjacent antennas is between 0 and 7 for a 0° to 90° DoA. For a large array the time
delay between the two outer antennas can thus become quite large relative to the
RF frequency, i.e. the time delay is equal to a number of a periods.

However, for beamforming at the IF, this delay translates to a much lower
frequency. At IF we have:

s(t) = Acos(wt + @)
sre(t)spo(t) = Azzpzﬂ [COS ((wRF +wro)t+ (Prr + ‘PLO))

+cos ((wrr — wro)t + (prre — ¢LO))]

29

30

For a time delay At and a frequency around RF (w = wgr + Aw), it follows:

srr(t) = cos ((wrp + Aw) (t + At) + @rr)
= cos(wrpt + Awt + wrpAt + AwAt + Qgrp)

sie(t) = spp(t)so(t)

= Afp[cos((pr +Aw - C()Lo)t
+ (wRF + A(A))At-i- ((PRF - ¢LO)) +..]
= AIF[cos((wRF - (ULo)t+ ((PRF — (PLO) + Awt

+ wrpAt + AwAt) +]

where (wrr — wro) t+(@rF — L0)+Awt is the desired signal, while wrp At+AwAt
is negated by a time delay correction, but only wrpAt is negated for a phase delay
correction.

From the above we can make two observations. Firstly, the time delay is the
same at IF as at RF, which means the time delay is small relative to the IF. So a time
delay, as a phase shift, is transparent to mixing. Note, however, that a time delay
correction at IF, i.e.:

SIF(—At) = AIF[cos((pr — (A)Lo)(—At) + A(U(—Af) e

indeed corrects the relevant terms, but also includes the term —w; o (-At). There-
fore, a time delay correction also comprises an additional phase shift of the signal.
As the applied time delay correction differs per antenna for beamforming, this
phase shift is also different per antenna signal and should be corrected.

Secondly, a phase shift correction leaves an error term of AwAt, which becomes
larger for larger Aw, i.e. for a larger bandwidth around the carrier. Thus phase shift
based beamforming is only suitable for signals with a small bandwidth (as we found
in section 2.2.2) compared to the RF. Also, there is a constant phase shift resulting
from the initial phase of the LO (¢10), which should be synchronised among the
antennas, or included in the phase shift correction.

2.2.4 Narrowband and wideband

Narrowband signals have a small fractional bandwidth; the bandwidth of the signal
is small compared to the carrier or median frequency. What is considered to be
“small” depends on the application and allowable errors. We will follow [3] and call
signals with a fractional bandwidth of less than 1% narrowband:

fu=Ni

100% < 19
Grof x 100% < 1%

o -
m -12
=
g |
S -24 7 2
4
-36

g frequency
(GHz)

-20 o

10
20 40 60 80
angle (°)

FIGURE 2.15: Beam squint

with f, the highest and f; the lowest frequency used. Signals with a larger fractional
bandwidth are called wideband. Bandwidth is relevant to beamforming in at least
two ways.

First, the distance d between antennas is fixed, but the phase shift experienced
for this fixed distance is dependent on frequency. The distance is set to /2 to avoid
grating lobes. Furthermore, A = ¢/f, so the smallest distance is set for the highest
frequency. As such, lower frequencies have a smaller effective area or aperture than
the highest frequency. This in turn results in a broadening beamwidth and nulls
moving outward for lower frequencies as can be seen in figure 2.15.

Second, if we apply a phase shift correction for steering the beam, we have seen
that the phase shift corrects the time delay and thus path length difference exactly
for only one frequency. The larger the difference in frequency, i.e. the larger the
bandwidth, the larger the error. This error can also be interpreted as mispointing
and is called beam-squint; the actual beam direction is different from the intended
direction and changes over frequency as clearly visible in figure 2.15. Beam-squint
does not happen when a time delay correction is used, as a time delay exactly
corrects the path length difference independent of the frequency.

As aresult, a different definition for a narrowband signal can be used. A signal is
narrowband up to the largest bandwidth for which the error with phase-shift based
beamforming is negligible. What is considered to be “negligible” again depends on
the applications. We will choose an amplitude error of 1 %o or —60 dB. Otherwise,
the signal is wideband and needs time delay (approximation) based beamforming.

NYaYe

) AJOTH.L ONIWJOJINVHL AVIIY ddSVHJ 'T'C \

A A

OO

DO

J\

=

32

2.2.5 Phased array system characteristics

From the discussion of the previous section, we can deduce a number of charac-

teristics of phased array systems. We found that an array is most sensitive in the

direction for which the delays at the different antennas are corrected.
Furthermore:

o If we increase the array size (by increasing N or d), the beam-width of the
main beam decreases (HPBW), which results in a higher angular resolution.

« A larger incident angle results in a larger HPBW, i.e. a wider main beam.

o If we achieve a more precise time delay or phase shift correction for each
antenna, we achieve a higher angular («,y) precision, i.e. deeper nulls and
more accurate beam-directions.

« For ahigher sampling (measurement) rate, we achieve a better time resolution
and a more accurate steering and therefore signal.

o The time delay between the antenna signals is transparent to frequency con-
version.

As mentioned, the delay of each antenna must be corrected for. The two basic
options are:

« atime delay approximation, which is suitable for wideband signals but com-
plex,

« a phase shift by a complex multiplication, which requires complex signals
but once we have those, the number of generated beams is easily increased at
low computational cost,

For the phase shift option, we can also compute many beams at once efficiently
with:
« a spatial FFT, which also needs complex signals but efficiently computes a
fan-of-beams.

As each beamforming method has advantages and disadvantages it is useful to
support all three of them if enough computational resources are available.

2.3 GENERIC BEAMFORMING PLATFORM

In section 2.2 an overview was presented of the advantages of using phased ar-
ray beamforming. Beamforming can be beneficial for any radio system, such
as satellite reception, radar, (radio) astronomy or mobile (3G/4G) and wireless
(WLAN/WiMax) communications. However, radar and radio astronomy applica-
tions use large arrays with high cost and low production volume, while mobile and
wireless communication for consumer applications needs to be low-cost. If we can
design a platform that is flexible and modular and therefore generic and scalable,
we can support all these applications with a single generic platform. Such a generic
platform could lower the cost by sharing development and production costs and by
enabling higher production volumes.

TABLE 2.2: Overview of applications where beamforming can be beneficial

Satellite adar Radio Mobile and wireless
reception astronomy communications
Number of antennas 256 4096 7392 64
Number of beams 3 20 24 32
Frequency (GHz) 10-13 7-13 0.01-0.24 2-6
Bandwidth (MHz) 50 100 100 1-30
SNR dynamic range (dB) 16 100 70 30
ADC (bits) 4 16 12 10

Figures for radar, radio astronomy and wireless base stations are based on current requirements and
extrapolated to the near future.

In this section we will propose a design for such a generic beamforming plat-
form. This design will also form the basis of the beamforming systems used in
chapters 3 and 6. We will first analyse the above mentioned applications and derive
the requirements of the platform. Next, we will present a system design of a typical
beamforming system, that will form the basis of the generic platform. We aim for
an IC beamformer for cost reasons, which is typically a monolithic component
and therefore not scalable. To achieve a scalable system, we propose a hierarchical
beamformer that splits up beamforming into multiple stages. Finally, we discuss a
hybrid beamformer, for which the beamformer includes analogue stages.

2.3.1 Applications

A comparison of the requirements of a beamforming system for satellite reception,
radar, radio astronomy and mobile and wireless communication is given in table 2.2
and further discussed below.

Satellite reception Digital television broadcasts are transmitted by many different
satellites, orbiting in a fixed position with respect to the earth. Satellites are used
to reflect an uplink signal to a large region on earth. Satellite positions in Europe
range from about 20° to 50° elevation and 5° to 30° azimuth. Since a satellite has
to operate for many years in space, it cannot be equipped with batteries and hence
uses solar energy for the transmission. Therefore, the transmitted power is limited.

Satellite systems require line-of-sight between transmitter and receiver. There-
fore, multi-path effects are assumed to be negligible. A satellite transmits multiple
unique data streams. To maximise the usage of such data streams, multiple TV
programs are compressed and multiplexed in the stream.

The DVB-S standard [28] specifies a frequency of 10.7 GHz to 12.75GHz, a
maximum SNR of 16 dB (-2 dB minimum), a channel bandwidth up to 36 MHz
(effective bandwidth used is 50 MHz due to pulse shaping filter roll-off) and satel-
lites that are at least 5° apart. The modulation technique used for individual DVB-S
channels is quadrature phase-shift keying (QPSK). QPSK uses four different phases
to represent transmitted information, equally distributed on the unit circle of the

33

34

FIGURE 2.16: Phased array in satellite reception FIGURE 2.17: Phased array in radar

complex plane [40]. Each of these four phases represents a symbol, which represents
two data bits. Since the transmission of two subsequent symbols requires instanta-
neous phase shifts in the transmitted output signal, high frequency components
are introduced. A pulse shaping filter is used to decrease the effects of these phase
shifts by spreading the signal into a slightly larger frequency band such that the
high frequency components are attenuated.

Conventionally, DVB-S receivers use a parabolic dish antenna, which can be
constructed easily and have a high efficiency. A dish antenna focuses a wavefront
incoming from a single direction to one focal point. The disadvantages of satellite
dishes are that they must be aimed mechanically and the dish must be at a fixed
position (stationary), as continuous steering is problematic because of the size of
the dish and wear and tear of the mechanics. This makes the dish unsuitable for
moving (or often relocating) vehicles, such as a car or yacht.

A phased array system can therefore be beneficial. A mobile environment is
not a problem as it is fully steered electronically. A 16x16=256 element array is
expected to be a reasonable size for cost reasons; a smaller array is not selective
enough, while a larger array requires additional antennas and processing making
the satellite receiver more expensive and therefore less competitive as a consumer
product. As satellites are at least 5° apart and we need 16 dB SNR, a beamwidth of
10° at —16 dB is needed. This is not possible as the beamwidth with a 16x16 array is
already 11° at 90° elevation and increasing at lower angles. If we allow one grating
lobe (or use 4 times as many antennas), the beamwidth is small enough down
to 35° elevation. The phased array size is then about 0.5m by 0.5m. Broadcasts
from multiple satellites can be received simultaneously by enabling for two or three
independent beams. This is useful, when multiple users want to receive signals
from different satellites [104].

Radar The main purpose of radar systems is to detect, locate and follow reflecting
objects or targets. It is for example used for scanning, tracking or guiding objects.
A typical radar system uses short periods of pulses to scan its environment. Since
the actual moment of transmission is known, the receiver is only used during a
certain time frame shortly after the transmission of the pulse. By measuring the

FIGURE 2.18: Phased array in radio astronomy (EM- FiGURE 2.19: Phased array in commu-
BRACE) nications

time between transmission and reception of the reflection, the distance to the target
can be calculated.

Phased arrays for radar have been used since the 1950s [109]. Current systems
use separate antennas and front-ends produced in specialised processes, making
the antenna front-ends costly because of the relatively low production volumes.
Furthermore, traditionally a large amount of specifically designed central processing
is used. This makes the system neither scalable nor energy efficient [90].

Future phased array radar systems require a large array size (upto thousands of
antennas), a high SNR (100 dB) and a high sample rate (100 MHz). We will consider
radar systems using 7 GHz to 13 GHz signals. At each moment in time, there might
be multiple interesting objects in sight. Therefore, tens of objects are scanned or
tracked simultaneously, requiring at least that many independent beams.

Radio astronomy The aim of radio astronomy is to construct images of celestial
objects. Similar to satellite reception, radio astronomy is a receiver-only application.
The energy radiated by celestial bodies is picked up and analysed, among others by
doing long-term correlation and integration of the signal. Therefore, the received
signal and steered direction have to be very stable. As the objects of interest are very
distant, the beamwidth must be as narrow as possible and as the received signals
are very weak the antennas must be as sensitive as possible.

Traditionally, very large dish antennas are used. However, structural/mechanical
limitations constrain their size. A phased array is not limited by this constraint. Fur-
thermore, phased arrays can track multiple objects at once and can be dynamically
steered much easier and faster than dish antennas.

The narrow beamwidth and high stability and sensitivity requires a very large
array with accurately calibrated antenna processing. The figures in table 2.2 are
based on the low frequency array (LOFAR) [21, 22, 36], a phased array for radio
astronomy that is currently being made operational. LOFAR consists of 77 stations
with 96 antennas each and can create 24 simultaneous beams. Note that a larger
SNR allows differentiation of strong and weak objects, while more sensitivity and
longer correlation allows for detection of fainter objects.

35

36

Mobile and wireless communications During the last few years, multi-antenna
techniques have been introduced in the latest wireless standards (e.g. IEEE 802.11n).
Such multiple-input multiple-output (MIMO) systems allow for higher channel util-
isation, as their transmission techniques are designed for both spatial and spectral
optimisation. Beamforming is one of the techniques that can be used to optimise
the spatial use of the spectrum. Mobile and wireless communication systems heavily
suffer from multi-path effects, which can be reduced with spatial filtering.

Nowadays, receivers typically use two or three antenna elements at most. Adding
more antenna elements implies that multiple additional front-ends are to be in-
cluded, which makes a portable receiver less compact and efficient. For the base
station, however, beamforming is a useful technique as the transmitted power can
be spatially controlled such that the beam is focused at receivers. Additionally,
independent beams can track individual users, limiting interference and energy.

Base station are commercial products for a large volume market, which also
implies that cost is important. Therefore, we assume the number of antennas to
be limited, but with a maximum number of beams for such limited arrays. Most
wireless and mobile communications operate from around 2 GHz to 5 GHz, using
up to 5 MHz bandwidth per channel and up to 60 dB SNR [9].

2.3.2 Requirements

From the short survey of applications it is evident that there are large differences in
array size. Therefore, a generic beamforming platform must be scalable and modular.
Beamforming requires a substantial amount of signal processing on streaming data,
but many applications also need to track objects requiring control (e.g. tracking)
algorithms with low computational cost. A generic beamforming platform must
thus be flexible enough to support control algorithms and efficient enough for
processing the antenna signals. Such a large amount of processing also requires an
energy-efficient design. The specifications of radar front-ends are sufficient for all
applications if cost can be low enough. This can be achieved, for example, with a
software-defined radio design. In a hierarchical system, beamforming is performed
in multiple stages, reducing the requirements of later stages because interferers can
be reduced in the first stages and signals are combined, in each stage, reducing the
number of signals. Analogue beamforming may be used in the first stage reducing
the number of needed ADCs and processing, resulting in a hybrid beamforming
system. The disadvantages of a hierarchical design are distributed control and extra
calibration. Hierarchical and hybrid beamforming and beamcontrol algorithms are
further discussed in this chapter, while a scalable, flexible and efficient processing
architecture is further discussed in chapter 3.

2.3.3 System design

In this section we will discuss a basic phased array beamforming system design.
For most applications, the received (RF) signal is at a high carrier frequency up to
13 GHz, which must be down-converted to an IF for further processing. This is done

by mixing the RF signal with an LO signal [80]. Beamforming can be performed
at several stages in this design, which we will discuss first. Then we will present a
block diagram of a typical system and its environment, and a short discussion on
the components of the block diagram.

2.3.3.1 Beamforming location

A time delay or phase shift correction can be performed at all the signal-paths of the
down-conversion step, i.e. at RF, at the LO or at IF. Each location has advantages
and disadvantages [106].

RF beamforming As beamforming combines signals together, RF beamforming
requires fewer down-conversion stages, saving hardware and cost. The disadvantage
is that design at RF is difficult and must be fully analogue [80]. Furthermore, the
RF front-ends have to be duplicated for additional beams. For these reasons it is
not considered further in this thesis.

LO beamforming A phase shift of the signal of interest can also be implemented
by setting the initial phase of the LO for each antenna to its phase correction, i.e.
the initial phases are the steering vector. The combining of signals is performed at
IF. The advantage is that the phase shift operation is out of the main signal path,
thereby not introducing extra noise and distortions. The disadvantage is that the
timing and distribution of each LO is critical; for correct beamforming, the timing
of all LOs must be synchronous. Also, only a phase shift correction can be applied,
not a time delay. Therefore, LO beamforming is also not considered further.

IF beamforming Beamforming can also be performed at IF, after down-conver-
sion. Timing of the LO is still critical, but now the beamforming is performed at a
lower frequency. However, a disadvantige is that the time delay between the signals
is small relative to the IF, as it is transparent to mixing (see section 2.2.3). The major
advantage of IF beamforming, and also the reason why we choose for IF beamform-
ing, is that the signal can first be digitised before beamforming. This allows for the
flexibility to use the same processing hardware for multiple applications. Digital
beamforming is only feasible at IF, because of the ADC requirements. ADCs with
both a high sampling rate and a high dynamic range (in bits) are either not feasible
or very costly and power hungry, requiring down-conversion before the ADCs [83].

2.3.3.2 Block diagram

The block diagram of a basic beamformer system, based on digital beamforming,
is shown in figure 2.20. The system consists of two major components: analogue
front-ends and digital processing. The (relevant) environment of the system also is
shown, illustrating the signal characteristics of the signals received by the antennas.
Signal generation, modelling the environment, is used for verifying the design. The
components in figure 2.20 are discussed in more detail in the following sections.

37

38

{

Analogue frontend

Digital processing

Environment System

FIGURE 2.20: Basic phased array system

2.3.3.3 Environment

A phased array receives signals from multiple sources. Some can be considered
signals-of-interest, others are interferers or noise. Combined they form the signals
that are received at the phased array antennas. Signal generation modelling or
emulation is needed during the system design, to test the phased array receiver.

We will consider one or more signal sources. Each transmitted signal travels
over a channel (indicated by the waves in figure 2.20) to each of the receiver antennas,
thereby experiencing a delay and attenuation and the addition of noise. Thus, a
separate channel for each transmitter-receiver combination is used. The signals
from all channels to a single antenna are combined at that receiver and form the
input for the analogue front-end.

2.3.3.4 Analogue front-end

After reception at the antenna elements, the RF front-end performs down-con-
version and possibly amplification and image rejection [80]. Next, sampling and
quantisation is performed by an ADC. The (digital) signals from multiple analogue
front-ends form the input for the digital processing.

2.3.3.5 Digital processing

The digital processing consists of antenna processing (AP) on individual antenna
signals, followed by beamforming processing and further (application dependent)
baseband (BB) processing.

Antenna processing For accurate beamforming, it is important that the gain and
delay of the signal from each antenna is equal (except for the path length difference),
i.e. the distortions from the antennas and front-ends should be corrected. To realise
this, antenna processing, e.g. calibration and/or equalisation, is applied.

A non-ideal antenna and front-end needs to be fine-tuned to compensate for
errors occurring due to non-idealities. For example:

« the antenna position and shape might not be as specified,
« the RF front-ends are not perfectly matched and introduce non-linearities,

« LO and ADC clocks may be slightly out of phase.

Calibration consists of a static gain and phase correction, which is determined
by comparing the measured results from a known reference signal to the expected
results. Equalisation is more advanced as it applies a gain and phase correction over
a frequency range, by using a filter. For distortions that vary over time, we need
periodic calibration or equalisation or we can use adaptive feedback.

As explained in section 2.2.2, in some systems a Hilbert transform is needed to
reconstruct the phase information of the sampled signal. An ideal Hilbert transform
is not possible as it is non-causal and of infinite length [77]. It is approximated with
a FIR filer, where the minimum order can be determined based on the required
SNR, filter roll-off and bandwidth [77].

So, typically for antenna processing a FIR filter is used. As a filter is needed for
each antenna, the amount of processing can easily become as large as the beam-
forming itself. However, it is independent of the number of beams that are formed.

Beamforming The beamforming (BF) processing (beamformer) applies a time
delay or phase shift correction and sums the signals, or uses an FFT. Note that the
same antenna signals can be used to form multiple beams in different directions
simultaneously. Therefore, for each beam, the antenna signals are combined with dif-
ferent correction parameters. This requires a dedicated instance of the beamformer
and beam control parts for each beam formed simultaneously.

Beamsteering 'The BS processing calculates the time delay or phase shift correc-
tion (as well as the gain) to be applied by each antenna. The beamsteerer thereby
defines the direction and shape of the formed beam.

Often the beamsteerer is combined with either the beamformer, which has the
advantage that only the shape and direction needs to be communicated while the
correction parameters calculation is local to the beamformer, or with the beamcon-
troller as part of the control algorithm.

Beamcontrol To calculate the correction parameters, the beamsteerer needs to
know in which angle (direction) to point the beam (and optionally which beamshape
to use). This information is provided by the BC processing.

The beamcontroller processing can simply scan an area, or determine the direc-
tion by searching for a source, for example based on an estimation of the angles of
the strongest sources available, or by tracking a source, for example using adaptive
feedback. Beamcontrol is further discussed in section 2.4.

39

40

FIGURE 2.21: Dividing the beamforming operation into multiple stages

Baseband processing The beamformer, which has spatially filtered out the signal-
of-interest, is typically followed by application dependent BB. Typical baseband
processing operations are detection, demodulation, error correction and decoding.

For example, radar baseband processing consists of (matched and Doppler)
filtering and detection to determine the presence, location and speed of an object.
Another example is the DVB-S applications. A DVB-S satellite signal is QPSK
modulated, and is filtered by a matched filter, followed by demodulation and error
correction at baseband [28].

2.3.4 Hierarchical beamforming

A beamformer can be split up into multiple stages, so-called hierarchical beamform-
ing. When beamforming is performed in multiple stages, the array is divided into
sub-arrays which are independently beamformed, while the next stage(s) combines
the signals of the subarrays. Such a scheme is illustrated in figure 2.21 for time delay
based beamforming.

Hierarchical beamforming is used to make the beamformer scalable, as a single
monolithic beamforming operation is split up into several smaller beamforming
operations. By normalising the time delays (or phase shifts) of the sub-array ele-
ments to their first element, this element has a zero time delay (also illustrated in
figure 2.21). Therefore, the total number of time delays remains the same for both
the monolithic beamformer and the hierarchical beamformer.

Hierarchical beamforming has a number of advantages. The beamforming
operation is modular and scalable. Further, the beamforming operation combines
signals, thereby reducing the number of signals and amount of processing for later
stages (assuming the number of beams is less than the number of elements of a
subarray). For a monolithic beamformer, all antenna signals are communicated
to a central location, making it a bottleneck. For a hierarchical beamformer, the
first stages can be distributed and moved closer to the antennas, thereby reducing
the communication bottleneck. However, the distributed processing and commu-
nication makes the design more complex. For example, a disadvantage is that the
steering vector from the beamsteerer or the steering angle from the beamcontroller
must be distributed to each stage and sub-array. Furthermore, the time delays or
phase shifts must be normalised for each stage. Finally, as the first stages combine

antenna signals, not all antenna signals are available at later stages. This is an advan-
tage but also a disadvantage if a beamcontrol algorithm computes a steering vector
based on a later stage, as we will then only have weights for the elements of that
stage. We will come back to this in section 2.4.

We will assume the subarrays consist of adjacent antenna elements and are all
steered equally. The sub-arrays are therefore smaller than the original array, so the
main beam and sidelobes are wider. Assume a 4x4 sub-array with antenna elements
A/2 apart. For the next stage, the signal from the sub-array could as well be from
a single antenna element, as it is already combined into a single signal. However,
these “virtual” antenna elements are four times farther apart in each direction (at
2] distance) then the original array. This results in grating lobes for the second and
later stages.

As we will rely on hierarchical beamforming for partitioning the beamforming
application in chapters 3 and 6, it is defined formally as follows. Again consider a
delay function Dy, that delays a signal s by §. The delay, like addition and multipli-
cation, can be applied in multiple successive steps, i.e.:

Ds(s) = Dg,(Ds,(s)), where § = 8; + 8,

Let N be the number of “real” or “virtual” antenna elements and M be the number
of elements in a sub-array or part in the partitioning. Hence, for a beamformer:

Yo D, (s)) LifN<M

3 (5,6) =
Iy Dy, (S;) ,otherwise
where

d == =X
8 =3 (i,7;)
ﬁj:[S(j.M)...S((j+1)~M—1)] ,for]:[o[ﬁ]]
Aj = M
Aj=0¢jm)
A= [0 8¢ganym-n =)]

where 3 is the beamforming operation and 9 applies the beamforming operation to
each element of a vector.

The list of signals s is split into M element sub-vectors if it is larger than M,
forming the sub-arrays of the previous stage. For each sub-array only the time
delays between the elements in the sub-array with respect to a reference element
are corrected, while the time delays between the reference elements are corrected
by the next stage. Therefore # contains the time delays for the sub-array normalised
to the first element. The results of the sub-arrays (S) are then beamformed with the
delays used for normalisation (A). Each stage the delays become larger, because
the reference elements are further apart. Also, the number of sub-arrays reduces
each stage as the beamforming combines their signals. Therefore, multi-stage beam-

41

42

D S L A B B BN L IR
E L ~~. Firststage ----- E

-12 | Rt a et CLETEY S A =

E - N NS S Ja

24 oo v Vi AN
36 Bl e e e L N
-80 -60 -40 -20 o 20 40 60 80

EEUS LA LI L L L L L S

O Erie T Segoitd stage ---77" 3

12 B PRGOS NNLASY =

E V | | :b

24 B ; ' E
2 36 B b e e 1
F\z/ -80 -60 -40 -20 o) 20 40 60 80
8 ;\A [T ,‘ T \» T ‘v T \‘ T \‘ UL ‘. T ,‘ T »\ T ‘, T '\;
= 0 L stage o
-12 | —

y aqC

24 E
36 B P
-80 -60 -40 -20 o 20 40 60 80

AN S L e By e e e

o E Comtined result ———

-12 | =

E :d

24 = E
-36 =
-80 -60 -40 -20 o 20 40 60 80

angle (°)

FIGURE 2.22: Beam pattern of multiple stages

forming has a tree-like structure. Note that phase shift corrections can similarly be
distributed over the stages.

As an example, consider a three stage beamformer for a 64 element ULA, i.e.
N = 64. Each stage combines 4 signals (4> = 64), i.e. M = 4. The beam patterns
of the three stages and their combined result are shown in figure 2.22. The beam
pattern of the first stage is shown in figure 2.22a. As expected, the beam-width of the
first stage is large because the aperture of the 4 elements is small. The beam pattern
of the second stage (figure 2.22b) shows a smaller beam-width, as the aperture
is increased to a distance of 16 elements, and grating lobes, as only 4 signals are
beamformed. Note that these grating lobes are exactly cancelled by the nulls of the
first stage. The third stage (figure 2.22¢) has the same beam-width of the original
64-element array with 15 grating lobes, of which 12 are “nulled” by the second stage
and 3 by the first stage. The final radiation pattern of all stages combined is shown
in figure 2.22d.

Because the grating lobes of later stages are “nulled” by previous stages, it is
important that the delay corrections are very accurate in the first stages so that the
nulls are deep and at the correct position.

Analogue frontend

Digital processing

Environment System

FIGURE 2.23: Hybrid phased array system

2.3.5 Hybrid beamforming

As a consequence of hierarchical beamforming, the first stage(s) can be performed
in the analogue domain, while later stages are performed in the digital domain. In
that case, the steering vector or steering angle must also be communicated to the
analogue beamforming stage(s). For the latter option an analogue beamsteerer is
needed. Such a system is shown in figure 2.23. Note that this results in a feedback
loop that crosses multiple domains.

Analogue beamforming The advantage of analogue beamforming is that antenna
signals are combined before they are digitised, thereby reducing the number of
required ADCs and the processing requirements. On the other hand, analogue
beamforming is less accurate and less flexible than digital beamforming. When the
signals are combined, the signal-of-interest is coherently added, while the noise
is incoherently added, so the SNR increases. The analogue signals have a limited
SNR, while the digital signals effectively have an unlimitedly SNR (by increasing
the word size). Furthermore, analogue beamforming typically allows only a single
beam, as each additional beam requires the same amount of additional hardware,
i.e. supporting a second beam duplicates the analogue beamforming hardware.

Digital beamforming With digital beamforming, beamforming is performed
after the ADCs. Digital beamforming at earlier stages increases the number of
required ADCs (although with a lower number of bits per ADC, assuming limited
interferers and for the same SNR at the output), but the system is more flexible.
For example, such a system can support time delay, phase shift, and FFT based
beamforming (see section 2.2.2) as well as different search and track algorithms,
using programmable hardware. Again, each additional beam requires the same
amount of additional processing (except for FFT beamforming). However, process-
ing capacity can be traded between computing more beams, more sophisticated
beamcontrol algorithms, doing nothing to lower energy consumption, or running
other applications, for example.

43

44

Nonetheless, the increased cost (in terms of e.g. money or power consumption)
of an ADC per antenna can be prohibitive. Thus, there is a trade-off between
analogue and digital beamforming and with a generic beamforming platform,
consisting of a hybrid hierarchical beamformer, we can accommodate all these
trade-offs.

Mixed analogue and digital beamforming The time delay between antennas can
be very small compared to the sample rate, because the RF is typically much higher
than the sample rate at IF. For example, a 5° DoA at 10 GHz with d = /2 results in
a time delay of sin() _4.36 ps, while a 200 MS/s ADC has a 5ns sample period.
Therefore, for a digital time delay based beamformer, interpolation is needed to
approximate time delays smaller than the sample period. Note that because the
DoA can become arbitrary close to 0° the time delays can also become arbitrary
small. On the other hand, the maximum delay between the outermost antennas
is much larger; for a 90° DoA at 10 GHz and a 256-element ULA, the time delay

between the two outer-most antennas is % -255 =12.75ns.

Large delays that are a multiple of the sample rate are easy to implement for
a digital beamformer, as they simply require memory elements to buffer samples.
However, such larger delays are difficult to implement for an analogue beamformer
(for example with delay lines or time-shifted sampling). Hence, the analogue
beamformer and the digital beamformer can nicely complement each other in a
hierarchical design by implementing small delays in the analogue domain and (the
remaining) larger delays in the digital domain.

A digital beamformer can implement both time delay based beamforming
and phase shift based beamforming, while an analogue beamformer typically only
supports one. For a phase shift based beamformer, the beam direction shifts to larger
angles for lower frequencies, i.e. mispointing or beam squint (see section 2.2.4).
For a time delay based beamformer mispointing does not occur. Thus, if the first
stage is phase shift based and the second is time delay based, the grating lobes of
the second stage are not accurately cancelled at lower frequencies (and similarly
when the first stage is time delay based and the second phase shift based). If the
first stage is time delay based, we can still choose between a time delay solution for
wideband signals or a phase shift solution at the second stage. If the first stage is
phase shift based, we can no longer (straightforwardly) support wideband signals
with a time delay based second stage. One possibility, which we have not further
explored, could be to use a frequency dependent null placement at the second
stage to match with the frequency dependent grating lobes of the first stage. This is
because for the wider beams at the first stages, mispointing is less of an issue (the
error is smaller). If the beamwidth of the first stage is wide enough to include the
(wideband) signal-of-interest at its lower frequencies, we can use a beam direction
that is constant over frequency for the later stages (when the beamwidth narrows)
to still support wideband signals.

2.4 BEAMCONTROL

We have proposed a hybrid hierarchical beamforming platform suitable for multiple
applications. All applications require a control algorithm to determine the steering
direction, so that we can scan or search for signals-of-interest or track signals (e.g. to
search or track satellites, targets, celestial bodies or mobile terminals). In this section
we will first provide an overview of three classes of beamcontrol algorithms, so
that we can position and evaluate the tracking algorithms of the following sections.
Next we will present an algorithm with a low computational complexity which
we apply for tracking M-PSK modulated signals. M-PSK modulated signals are
used in satellite communications, for example. This algorithm is not suitable for
hierarchical systems. Therefore an alternative algorithm is developed that can be
used for tracking signals with a hierarchical beamforming system.

2.4.1 Beamcontrol algorithm classes

For many applications it is necessary to track signals-of-interest in a mobile environ-
ment; the source or receiver or both can be moving (see section 2.3.1). Furthermore,
the initial DoA is often not known, thus we must first search for signals-of-interest.
Searching and tracking signals is achieved by beamcontrol algorithms.
Beamcontrol algorithms determine the steering direction and optionally the
beamshape. The algorithm can use a pre-determined steering direction or determine
the direction from the received signals, so-called adaptive beamcontrol algorithms.
We will focus on the latter as the first is (relatively) straightforward. An adaptive
beamcontrol algorithm measures the received signal, analyses it and applies a control
feedback signal in the form of a steering vector or steering angle (and beamshape).
There are 3 classes of adaptive beamcontrol algorithms [3].

o Temporal reference beamforming algorithms rely on correlation in time be-
tween the received signals and a known reference signal. The reference signal
is known beforehand and embedded in the signal, such as a training sequence
or pilot signal.

o Spatial reference beamforming algorithms use correlation in space between
the signals received by individual antennas.

« Blind beamforming algorithms rely on structural and statistical properties of
the received signal.

2.4.1.1 Temporal reference

A temporal reference algorithm compares the received signals with expected refer-
ence signals and based on that calculates a correction. As such, it can be seen as a
form of calibration or equalisation. A temporal reference algorithm is for example
used in radar to search for hits, as the sent signal (radar pulse) is known. It is
also used in mobile and wireless communication where pilot symbols are used to
synchronise in case of multi-path interference.

45

46

A temporal reference algorithm calculates a correction weight vector w based
on the cross-correlation § between the antenna signals s;(#) and reference signals
r;(t) (with i enumerating the antennas) and the covariance matrix I of the antenna
signals [3]:

w=T"p

Note that because a weight vector is calculated, beamsteering is included in the
algorithm. Computing the cross-correlation p and covariance I' mainly involves
multiply-accumulate (MAC) operations. The computational complexity in MAC
operations for cross-correlation is O(NK), with N the number of antenna elements
and K the reference signal length. The covariance matrix and matrix-vector multi-
plication have an O(N?) complexity, but the algorithm is dominated by the matrix
inversion with complexity O(N?).

2.4.1.2 Spatial reference

A spatial reference algorithm estimates DoAs by comparing the received antenna sig-
nals with each other, followed by a selection of the signal-of-interest (the remaining
signals being interferers). The major feature of spatial reference algorithms is DoA
estimation, which is useful for searching for the initial location of sources, but also
for tracking if the DoA estimation is performed continuously. The DoA is estimated
by (spatially) correlating the antenna signals with delayed version corresponding to
a DoA. This assumes the frequencies of the signals are known and that different
sources are uncorrelated.

A basic DoA estimation algorithm is to scan over all angles and perform peak
detection. Some more sophisticated algorithms are multiple signal classification
(MUSIC), estimation of signal parameters by rotational invariance techniques
(ESPRIT) or maximum likelihood (ML) based techniques [74, 84, 88, 120].

Typically, spatial reference algorithms have a high computational complexity.
For example, the MUSIC algorithm exploits the eigenstructure of the covariance
matrix I to calculate the MUSIC spectrum (the power P as a function of the DoA
9) [3]:

Wt (9)w(9)

P(®) - WH(9)V, VEw(9)

with V;, the noise vector, i.e. the vector of the eigenvectors after eigendecomposition
of T less the D largest eigenvectors which are considered of the signals-of-interest.

A block diagram of MUSIC is shown in figure 2.24. The covariance matrix
calculation correlates signals from all the antenna elements and has complexity
O(N?). The eigendecomposition is the most complex part and requires an iterative
numerical approximation, such as QR-decomposition [31], requiring O(N*) MAC
operations [85]. The spectrum calculation is shown above and consists of matrix and
vector products with pre-calculated steering vectors (O(N?)). The pre-calculated
steering vectors consist of a steering vectors for each DoAs considered, and are

s Covariance | T Eigen- Va Spectrum Peak DoAs
matrix decomposition calculation selection
A

Steering

vectors

FIGURE 2.24: MUSIC

expected to be static. Peak selection is a simple search over N angles (O(N)). Thus,
complexity is dominated by eigendecomposition [111], and is comparable to the
temporal reference algorithms.

2.4.1.3 Blind

Both temporal as well as spatial reference beamforming algorithms require O(N?)
of MAC operations. For applications with a 100 MS/s sample rate per antenna for
(N =) 100 to 1000 antennas, this is not feasible for tracking sources. Of course, the
dynamics of the DoAs is likely much lower than the sample rate, but the number
of antennas and thus the number of operations remains high. Blind beamform-
ing algorithms provide a way to track signals with much lower computational
complexity.

Blind beamforming algorithms, also known as blind deconvolution algorithms,
use known signal characteristics of the received signal after beamforming such as a
constant modulus or fixed constellation points in the complex plane. Signal changes
are translated to a weight vector or steering angle, however, the initial angle of the
signal-of-interest must be known. Temporal or spatial reference algorithms can, for
example, be used to search for objects, after which they can be tracked with a blind
beamforming algorithm.

To find the difference between the properties of the received beamformed signal
and the expected properties, a cost function is defined. Properties of the received
signal are compared with expected properties using this cost function (O(1)) and
the beamformer is steered into the direction of the lowest cost (O(1)), thereby
iteratively updating the steering vector (O(N)) (hence including the beamsteerer).

As blind beamforming algorithms rely on structural or statistical signal proper-
ties, different algorithms are needed for applications with different signal charac-
teristics (such as the modulation scheme used). The next section presents a blind
beamforming algorithm that we have developed for tracking signals with constant
modulation points, such as QPSK signals used in DVB-S. Furthermore, in the
following section we will modify this algorithm to provide steering angle updates
instead of a weight vector.

47

48

I

R(y)

FIGURE 2.25: Surface plot of the Jcma cost FIGURE 2.26: Surface plot of the Jz_caa cost
function function

2.4.2 Extended CMA

An algorithm for equalisation of signals with a constant modulus, developed by Go-
dard [34] and independently by Treichler and Agee [100], can be used for blind
beamforming [100]. This algorithm is called the constant modulus algorithm
(CMA). Xu [118] proposed a phase extension for equalisation of PSK modulated
signals, which we call extended CMA (E-CMA). We apply E-CMA to beamforming
in order to correct modulus and phase deviations caused by the movement of the
source [14]. This is useful for the DVB-S application (see section 2.3.1) which uses
QPSK (4-PSK) signals or for example for radar with PSK modulated pulses.

For example, for the DVB-S application, consider a phased array on a moving
vehicle. With respect to the array, the source signal from a satellite is continuously
moving. Furthermore, as a consumer product, the computational resources required
for continuously tracking the source with a spatial reference algorithm are too large.
Consequently, we propose to use a spatial reference algorithm only to determine the
initial angle, which therefore can take some time, followed by the E-CMA algorithm
to track the source in real-time.

2.4.2.1 Constant modulus algorithm

As said, CMA equalises signals with a constant modulus. Therefore, a cost function
is defined as the expected deviation of the squared modulus of the signal-of-interest
y from the constant modulus R, and which has minimal cost if |y| = R:

Joma = E {(Iyl2 - R)Z}

Herein, E represents the expected value. The cost function is illustrated in figure 2.25.
As can be seen, the lowest cost is at a circle around the origin of the complex plane
which has a constant range or modulus R.

The beamformer output y = w!'s is the result of the product of antenna signals
after antenna processing (5) with a correction weight vector (#'7). The aim of the
CMA algorithm is to update the weights of the steering vector in such a way that
the costs Jopa are minimised. When the source is moving, the beam is slightly

mispointing as the DoA changes, resulting in a gain or modulus decrease and
therefore a cost increase. Furthermore, interferers vary the modulus of the received
signal. These effects are compensated by the CMA algorithm.

To minimise costs, a stochastic gradient descent technique with respect to w is
used in CMA for blind beamforming [100]. The gradient follows as:

Vilcma = E {2 : (|y|2 - R) Vi (|)/|2 B R)}
(2.2)

H<<H

2 * _ ~HoH-
I =yy" =wisstw

where Vj represents the gradient with respect to w. Using Vy {WHE st W} =
255w [66] gives:

Vadoma =4-E{ (1’ - R) 55"} = 4-E{(|y - R) 55"}

The steering vector w is updated in the direction of the negative gradient to
minimise J:
wlt+1]=w[t] - uVilcma

Herein, ¢ determines the convergence rate of the gradient descent.
This is rewritten as:

wle+1]=w(]-u-(y[AF - R)-5[e] y[1)"

where instantaneous values are used as an approximation of the expected value and
y absorbs the factor 4.

With the resulting weight vector, the phased array is steered by the CMA al-
gorithm, tracking the source. Furthermore, interferers are rejected because they
increase the cost, causing the gradient descent algorithm to adjust the beamshape
to minimum cost.

2.4.2.2 Phase extension

An M-PSK modulated signal has a constant amplitude and a uniformly distributed
phase ¢ = 2"7”’, with M the number of constellation points. CMA can be improved
by including the phase in the cost function. To include the phase we observe that the
phase constraint %([) = m7 is equivalent to si n(%(/)) = 0 [118]. The cost function
then follows as:

Jo-cnn = E{(1p =)'} £ { (s (5 <)) |

with < y giving the (polar) angle of y. The cost function is illustrated in figure 2.26
for QPSK, and shows minima that are not only at a constant modulus but also at one
of four constant angles or phases, corresponding to the constellation points of QPSK.
Thus, minimum costs are reached whenever y simultaneously has a modulus ||

49

50

and a phase < y equal to one of the M-PSK symbol phases with modulus R. E-CMA
thus equalises both the modulus and the phase of the signal-of-interest.

Similar to CMA the cost Jg_cpma is iteratively minimised using a stochastic
gradient-descent [118], resulting in:

wlt+1]=w([t]-p-e-5[t]
where
()4 2 .
8 (171" = [yI*) + Msin (M 2 y)
4j-y

Herein p again determines the convergence rate, and ¢ is a scalar correction factor
that is multiplied with the antenna signals s to compute steering vector updates.

Concerning the computational complexity of E-CMA; N multiplications are

required for the multiplication with s, and N subtractions for updating w. The
remaining operation are scalar operations. E-CMA thus has complexity O(N).

&=

2.4.2.3 E-CMA for beamforming

A moving phased array experiences both translational as rotational movement with
respect to the source.

For a translational movement the antenna elements all experience the same
change in path length and thus time delay from the source. The beamformed signal
therefore also experiences this time delay. If the array position changes over time
(i.e. it moves), the time delay of the beamformed signal also changes over time.
For a M-PSK signal, this effect corresponds to a phase shift that varies over time.
As such it causes a rotation of the constellation points. Typically, this rotation is
corrected with a de-rotator. However, for E-CMA the rotation causes an increase in
cost which is automatically corrected by the algorithm, eliminating the need for a
de-rotator.

For a rotational movement of the array, the DoA of the source changes (from
the perspective of the array). A rotational movement causes a gain or modulus
decrease because of mispointing.

For a phase reference at the centre of a ULA the array factor is:

d-sin(9)
A

Gulw) = 3 S (=H2) (-5)14)
i=1

With the centre of the array at the origin, translational and rotational movements
are orthogonal effects. A translation of the array only causes a rotation of the QPSK
constellation points and no modulus change, while a rotation of the array only
causes a modulus change and no rotation of the QPSK constellation points.

Thus, movement of a phased array introduces modulus and phase deviations
in the M-PSK modulated output of the beamformer due to angular mispointing
and a changing path length from the array to the source, respectively. These need
to be corrected before the demodulator. E-CMA compensates for those deviations
by altering the steering vector weights of the beamformer.

gain (dB)
gain (dB)

24

436

4 time (ms)

-80 ., -80 _60 _
fot0 20 o 40 T 8 4020 0 20 4o 077
0

angle (°) angle (°)

FIGURE 2.27: E-CMA radiation pattern for FIGURE 2.28: E-CMA radiation pattern for
the vehicle dynamics scenario the synthetic scenario

2.4.2.4 Results

To verify E-CMA, we have modelled the scenario of a ULA on a moving vehicle for
the DVB-S application. A source is QPSK modulated, from which antenna signals
are generated. Phase-shift based beamforming is used with E-CMA for beamcontrol
and beamsteering. The beamformer output is demodulated and verified against
symbol errors.

The translational and rotational movements of the array are based on the vehicle
dynamics of a Renault Clio RL 1.1 (the vehicle dynamics are discussed in more detail
in [14]) and a synthetic scenario. In both scenarios an 8-element ULA is used, a
channel with a SNR of 16 dB, and a convergence rate y of 0.05.

For the vehicle dynamics, the car’s velocity is 72km/h (20 m/s). In the initial
situation the car is driving towards the source (@ = 0° i.e. the steering angle is
0°). At t = 0.1second the car is instantaneously steered to 11.5° causing the car
to start turning and the DoA of the source to change. Furthermore, the velocity
towards the source decreases. The resulting radiation pattern over time is shown
in figure 2.27. The main beam is following the scenario as described, it is kept at
0° until 0.1s, after which the car start to turn and the main beam follows. There
is a slight gain increase and some irregularities in the beam pattern due to the
E-CMA algorithm, but overall the source is tracked well. The constellation diagram
of the output symbols is shown in figure 2.29. The figure shows a clear separation
between the constellation points in the four quadrants. We have also compared the
output symbols with the input symbols and no symbol errors have occurred for the
40 x 10° symbols simulated from 0's to 1s. We therefore conclude that E-CMA is
correctly following the trajectory of the car and de-rotating the QPSK symbols.

The car dynamics are relatively slow compared to the antenna data rate of
50 MS/s (complex). For the synthetic scenario a more extreme situation is used;
the velocity is 216 km/h (60 m/s) and the phased array moves in such a way that an
ideal steering angle would describe a sine wave with a frequency of 50 Hz and an
amplitude of 30° azimuth. The resulting radiation pattern over time is shown in

Y \, N~

[M) V()
=))
WA

) TOULNOOWVEg ‘b'T

52

270

FIGURE 2.29: Constellation diagram of the output symbols

figure 2.28. For this scenario, E-CMA can also successfully track the source without
any symbol errors. Note that the radiation pattern contains somewhat distorted
sidelobes and has less deep nulls than an ideal pattern. This is because there are no
interferers for this scenario, giving the gradient descent algorithm no incentive to
increase the null depth to reject those.

The next scenario concerns a hierarchical hybrid array. The array consists
of a 4-element analogue beamformer first stage, followed by a 8-element digital
beamformer second stage, for a total of 32 antenna elements. In general, CMA and
E-CMA use antenna signals s to calculate a steering vector w which consists of a gain
and phase correction for each antenna signal. Assuming the blind beamforming
algorithm is implemented in the digital domain, only the digital antenna signals are
available. These “digital” antenna signals consist of the beamformed results of the
analogue stage. For the radiation pattern of the digital stage in case of a hierarchical
beamformer, we expect grating lobes which are cancelled by the radiation pattern
of the analogue stage. However, this means the analogue stage must also be steered,
while the w of E-CMA contains weights for the “digital” antenna signals. Figure 2.30
shows the radiation pattern of the digital stage resulting with E-CMA when the
analogue stage is not steered (i.e. has a constant 0° azimuth angle). As we can see,
E-CMA can not follow the source when the azimuth angle becomes larger than the
beam-width of the analogue stage, causing the gain to increase significantly and
causing symbol errors. Figure 2.31 shows the same situation with an ideally steered
analogue stage. Now, E-CMA can correctly track the source without symbol errors.

In the next section, we will discuss a version of CMA that calculates a steering
angle instead of a weight vector. As such, we can use this steering angle to steer
both the analogue stage as well as the digital stage.

E-CMA is defined for M-PSK modulated signals. Further work in this direction
could define cost functions for other modulation schemes such as quadrature
amplitude modulation (QAM) and derive a gradient descent minimiser for those
kind of signals.

gain (dB)

4 time (ms)

-80 .
60 -40 50 0 20 40 go 8
angle (°) °

FIGURE 2.30: E-CMA radiation pattern of the
digital stage without steering the analogue
stage

gain (dB)

s 4 time (ms)
“60 40 .50 0 20 40 ¢o 8
angle (°) °

FIGURE 2.31: E-CMA radiation pattern of
the digital stage with ideal steering of the
analogue stage

2.4.3 Angular CMA

Angular CMA (A-CMA) is an adaptation of CMA to provide a steering angle
instead of a weight vector. As we found from the previous section, CMA and E-
CMA take a vector of antenna signals as input to calculate a correction for each
antenna signal. However, not all antenna signals are available in digitised form
in a hybrid hierarchical beamforming system (see section 2.3.4). Therefore, only
corrections are provided for the input signal of the digital stage after analogue
beamforming is already performed. With a steering angle, a separate beamsteerer
can be used to calculate correction parameters for both the analogue as well as
the digital beamforming stage. More importantly, the steering angle is used to
calculate just the phase taper. This means the amplitude taper can still be defined
independently, unlike the weight vector from CMA. CMA also has the characteristic
that sometimes just the gain is increased to achieve the expected modulus instead
of steering the beam in the direction of the source, especially when there are no
interferers. This is problematic because it reduces the SNR while beamsteering with
a phase taper does not.

The derivation of A-CMA was performed by Blom in [KCR:7]. In this thesis we
will therefore only provide the major steps in the derivation, needed to understand
the general idea. Furthermore, we will apply A-CMA for a hybrid hierarchical
beamformer as an additional contribution.

2.4.3.1 Derivation

The derivation of A-CMA is based on the derivation of CMA: first a cost function is
defined, then the gradient of the cost function is determined and finally the gradient
is used with the gradient descent algorithm.

To adapt CMA to calculate a steering angle, the cost function is made dependent
on the angle by using a phase taper as weight vector. Therefore we need the array

YT w:j\&

AV Ve

\
()
J

JADAS

o}
t
>
=
@)
©)
Z
—
=3
O
=

54

It VAREN AV
0.8

0.6

Ja-cma

0.4

v v b b by

LA N O L L) L

Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il l Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il
o)
-80 -60 -40 -20 o 20 40 60 80
angle (°)

FIGURE 2.32: Surface plot of the Ja_cma cost function

structure (i.e. the antenna positions) as the phase taper is dependent on it. In this
work, a ULA is assumed with a LPT. The resulting weight vector follows as:

2nedsin(0) -
J 1 ‘n

w(0) = e =T 0., (N-1)]T

Next we will define the cost function and apply a gradient descent to derive A-CMA.

Cost function Using the cost function of CMA with the above weight vector we
find:
2 2
Ja—cma (0) :E{(—R) }

{ andsn@) o\ H_ [’
=E ((eJ 1) s‘ —R)

This cost function is shown in figure 2.32 for d = A//2and a 0° DoA. As can be seen, the
cost function has a global minimum at 0° DoA, but also has local minima. Therefore,
the steering angle must stay within the convergence region for the gradient descent
to converge to the global minimum, i.e. the angle must stay between the maxima
surrounding the global minimum.

Because of the w (G)H X term, the cost function is comparable to an (inverted)
radiation pattern. The convergence region is thus likewise determined by the
physical distance between the two outer-antennas of an array, i.e. it is comparable
to the beamwidth. The beamwidth of a ULA, and thus the convergence region for
A-CMA with an LPT, is given by the INBW [3]:

w(0)"s

A
INBWy o =2 in| —
00=0 arcsm(dN)

Gradient descent The gradient descent algorithm uses the derivative with respect
to 0 of the cost function (using equation (2.2)):

Vo Jacama = E{Z- (|)/|2 -R)-Vy ((e¢(9)~ﬁ)H§§H6¢(9)-ﬁ B R)}
Reordering terms and using B(8) = e?(9)7 (e$(O))H gives:
VoJacma=2-E{(Iyf* - R)- ("B (6)5)}
where B'(6) = a%B(G) can be written as:

0 o (ngmmye) ¢! (@) (Mo (6)
: 0 :
(Vlel—no)gb,(e)e(nNil_nU)(p(e) cee O

o'(0) = j2ﬂ-d;os(0)

B'(0) =

As with CMA and E-CMA the angle 6 is updated in the direction of the negative
gradient descent using instantaneous values as an approximation of the expected
value:

oL +1) = o] - Iy (17 - &) - (11" B'(0L11)<[1))

where y absorbs the factor 2. More details can be found in [KCR:7].

The computational complexity of A-CMA is then dominated by the computa-
tion of and matrix-vector multiplication with N x N matrix B’(8) resulting in a
O(N?) complexity, i.e. more than E-CMA but far less than temporal and spatial
beamforming algorithms.

2.4.3.2 Results

We repeat the hierarchical hybrid array scenario of the previous section, but instead
of using an ideal steering vector for the analogue part, we use a LPT based on the
steering angle determined by A-CMA. The radiation pattern of the analogue beam-
former is shown in figure 2.33 and the radiation pattern of the digital beamformer
is shown in figure 2.34. The analogue stage consists of 4 element beamformers and
digital stage is an 8 element beamformer. The steering angle is used for both the
analogue and digital stage, resulting in radiation patterns that closely follow the
DoA of the source.

A-CMA operates on only the digital antenna data. The antenna positions of the
digital “virtual” antennas have a distance d which is larger than /2. Therefore the
cost function has multiple global minima, comparable to grating lobes. In this case
d =21 and N = 8 resulting in a convergence region given by the INBW of:

A 1
INBWg,-o = 2arcsin (d—N) = 2arcsin (ﬁ) ~ 7°

55

) CHAPTER 2. APPLICATION DOMAIN: BEAMFORMING (%)

—
\

)
)

)\

gain (dB)
gain (dB)

“24

-36

00 20 40 6o gg 00 20 40 6o gg
angle (°) angle (°)

FIGURE 2.33: A-CMA radiation pattern of FIGURE 2.34: A-CMA radiation pattern of
the analogue stage the digital stage

A LPT is used for derivation by A-CMA, requiring the antenna elements to be
at a fixed distance. A LPT is also used for beamsteering and no gain taper is used.
Therefore, the nulls are well-defined but at fixed position. By using a gain taper, the
beam-shape and null positions can be defined. It is therefore interesting to further
explore A-CMA based blind beamforming in this direction.

Note that A-CMA does not correct the rotation of the constellation points as
E-CMA does, because a steering angle is calculated based on the CMA cost function.
Therefore, the steering angle is only adjusted on the basis of the modulus of w(6)"s
and not the phase. This steering angle is used to calculate a LPT; de-rotation could
possibly be included as a constant phase offset for the LPT.

2.5 CONCLUSION

In this chapter we have presented the application domain of phased array beam-
forming applications. A phased array consists of an array of antennas, the signals
of which are continuously being processed to perform spatial filtering. As such, a
beamforming application consists of a lot of signal processing on streaming data. As
a larger high-performance streaming signal processing application that is resource
constrained, beamforming applications form a good case study for the design of
future demanding embedded systems.

A generic beamforming platform is proposed to enable beamforming for con-
sumer applications. This is achieved by lowering the cost of the platform by sharing
development cost and economies of scale. The generic beamforming platform
consists of an analogue front-end including an ADC for each antenna, and digital
processing consisting of antenna processing (filtering) for each antenna, followed
by beamforming and baseband processing. The beamformer applies a time delay
or phase shift to each antenna signal before summing the signals. The time delays
or phase shifts for a certain steering direction are computed by the beamsteerer,
while the steering direction is determined by the beamcontrol processing. The

beamcontroller introduces adaptivity and feedback, complicating the design. Fur-
thermore, the verification of applications on the platform requires inclusion of the
environment when modelling and simulating the platform.

An analysis of beamforming applications shows large differences in array size
and therefore processing requirements. As a consequence, a generic platform that
supports all applications must be modular and scalable to be cost-effective. In
addition, the platform must be flexible enough to support multiple applications and
multiple beamforming methods. This also involves partitioning the beamformer
into multiple stages to support modular and scalable processing, so-called hierar-
chical beamforming. Furthermore, hybrid beamforming is proposed to further
reduce cost by lowering the number of required analogue front-ends and antenna
processing using analogue beamformers for the first stage.

With a phased array system, signals-of-interest can be searched or tracked in a
dynamic scenario, e.g. a satellite is tracked with a phased array on a moving vehicle,
or searching for targets with a radar system. Searching or tracking is performed
by the beamcontrol algorithm. Analysis of beamcontrol algorithms show that
search algorithms are computationally complex. A tracking algorithm based on
structural or statistical properties is less complex, but requires such signals from the
application. The generic platform should be flexible enough to support switching
between a search algorithm for finding the initial DoA of a signal-of-interest and
tracking and beamforming after that for normal operation.

E-CMA is a tracking algorithm we have developed for M-PSK modulated signals,
such as used for DVB-S signals in satellite reception. It is an adaptive algorithm that
updates the steering vector of a phase shift based beamformer such that the cost of
a cost function is minimised. The cost function has lowest cost if the constellation
points of the PSK modulated signal have a constant modulus and phase. Modulus
changes are caused by rotational movement of the array, while phase changes are
caused by translational movement. As such, both movements are corrected by the
E-CMA algorithm. E-CMA has low complexity that increases linearly with the
number of antennas. The algorithm was verified with a scenario of a phased array
on a vehicle that is moving towards the source while turning, and a more extreme
synthetic scenario where the DoA changes over 60°. In both cases E-CMA is able
to successfully track the QPSK modulated source without causing symbol errors.

However, E-CMA is not suitable for a hybrid beamforming system, because it
only computes a steering vector for the digital beamforming stage, which we can
not use for steering the analogue stage. Therefore, the A-CMA tracking algorithm
is developed. A-CMA is an adaptive algorithm that iteratively updates a steering
angle instead of a steering vector. This is achieved by defining a cost function based
on a LPT in the direction of the steering angle. This steering angle is used to steer
both the analogue stage and the digital stage of the hybrid beamformer. A-CMA
is more complex than E-CMA with a quadratic dependence on the number of
antennas, but it is less complex than search algorithms. A-CMA is verified using the
above synthetic scenario and a hybrid hierarchical array with 4-element analogue
beamformers and an 8-element digital beamformer, and is successfully able to track
the source.

57

CHAPTER

Tiled reconfigurable architectures for
beamforming

ABSTRACT - The main requirements from the application domain for a generic
beamforming platform are (energy) efficiency, scalability and flexibility. In this
chapter we explore tiled reconfigurable architectures for beamforming applications.
Scalability is achieved by using a tiled architecture, and efficiency and flexibility are
achieved using a reconfigurable architecture. The consequences of mapping a large
application such as beamforming onto an embedded system consisting of a (low-cost)
tiled reconfigurable architecture will be analysed. Therefore, we show the results of
three example implementations; an audio beamformer on a single reconfigurable
tile, a small tiled reconfigurable architecture for a DVB-S beamformer, and a large
conceptual tiled architecture for radio astronomy.

A tiled reconfigurable architecture could provide an efficient, scalable and flexible
platform for embedded systems. In this chapter we will explore tiled reconfigurable
architectures to investigate whether they are suitable for the application domain
described in chapter 2. There we proposed a generic phased array beamforming
platform and we concluded that such a platform must be scalable and flexible to
support multiple beamforming applications.

Phased array beamforming techniques have been applied in radar and radio
astronomy systems for many years already. The design of these systems is mainly
driven by functional requirements (e.g., resolution, sensitivity, response time) where
non-functional requirements (e.g., costs, power consumption) are of secondary
concern [109]. For that reason, no low-cost, low-power systems for more than a
few antennas are available yet. Conventional phased array systems also typically

Parts of this chapter have been published in [KCR:6], [KCR:11] and [KCR:12].

60

use a large amount of dedicated central processing hardware, making the system
neither scalable nor flexible [90].

In consumer applications such as wireless and mobile communications and
satellite receivers, phased array antennas show great promise but their large scale
introduction has been obstructed by the high costs involved. A generic low-cost
beamforming platform could enable phased array beamforming for consumer
applications. This can be realised by using a scalable architecture that is flexible
enough to support multiple applications, such that the same architecture can be
reused for more applications. A tiled and reconfigurable architecture seems to be a
promising candidate for such an architecture.

Tiled architectures have not been widely used for phased array beamforming
applications yet. The usage of tiled platforms is until now limited to small and
medium size applications, and it is not clear whether they are usable for large scale
applications as well. We will discuss various aspects of tiled architectures such as
flexibility and scalability, and we present example implementations for beamforming
on three different architectures: the MoNTIUM, the LEON SoC, and a concept tiled
architecture. We will find that a tiled reconfigurable architecture indeed is suitable
for large scale applications, provided such an application can be partitioned into
components which each fit on one tile. To be able to do so communication has to
be made explicit. We use the dataflow model to express both the partitioning of the
application and the communication between components.

Note that typically multiple applications run simultaneously on a tiled archi-
tecture [39]. As such, applications are distributed over the tiles and care is taken
that adding an application does not interfere with the applications that are already
running, i.e. composability with respect to applications. For the beamforming
applications, a single application runs on the tiled architecture and tasks of the
application are distributed. Resource management such as mapping the application
on the platform is less critical and less dynamic than with multiple applications
and we will perform a manual mapping of the beamforming application on a tiled
architecture.

Concerning reconfigurability we will discuss the possibilities to run various
scenarios of the same application on the same platform. In particular, regarding the
beamforming application we observed that the DoA estimation algorithm is too
expensive to run continuously, so that it is necessary to reconfigure between this
algorithm and less expensive tracking algorithms. As such, with reconfiguration
of a tiled architecture, it is well possible to switch between an expensive search
algorithm and a cheaper tracking algorithm.

3.1 REQUIREMENTS FROM THE APPLICATION DOMAIN

In this section we will discuss the requirements from the application domain that
are relevant to evaluate tiled reconfigurable architectures.

TaBLE 3.1: Complexity per basic operation per sample

Operation Complexity
Antenna processing Filter O (NF)
Beamforming Time delay / Phase shift O (NFB)/O(NB)
Beamsteering Compute correction vector O (NB)
Beamcontrol E-CMA O (NB)

A-CMA O (N?B)

N: the number of antennas; F: the number of filter taps; B: the number of beams to be formed.

3.1.1 Distributed processing

Typical operations that occur in streaming signal processing applications, such
as beamforming, are first of all multiply-accumulates (MACs), often occurring
in matrix and vector multiplications, or in FFTs. In addition, especially in con-
trol algorithms, such as beamcontrol algorithms, operations such as division and
trigonometric functions are required, but these are much less frequent.

The number of times that these MAC operations have to be executed is huge,
due to the very high data rates. For example, for radar applications a 200 MS/s
sample rate with 16 bit samples (~ 100 dB) is used. For 1024 antennas, FFT based
beamforming would need 200 - 10° - 5120 - 10 ~ 10 T operations per second (ops).
For satellite applications with 16x16 antennas, three beams and 100 MS/s sample
rate, we would need 100 - 10° - 8 - 256 - 3 ~ 400 G ops with 4 bit samples (~ 20 dB).

The most demanding application is probably radio astronomy. LOFAR, for
example, uses polyphase filter banks with 16-tap FIR filters and a 1024-point FFT
for each of the 96 stations, followed by distributed beamforming. Next a polyphase
filter bank with 256 16-tap FIR filters and a 256-point FFT is used for each beam,
followed by a centrally processed correlation, all together totalling 160 T ops [21]
(also see section 3.3.3).

On the other hand, the complexity of the major operations of a beamforming
system is not big. From table 3.1 it follows that, e.g. the complexity of the beamsteer-
ing operation is linear in the number of antennas and in the number of beams. Only
for A-CMA beamcontrol, the complexity is quadratic in the number of antennas.
Since the number of beams usually is small, the main factor in the complexity is
the number of antennas.

However, even though the complexity of the individual components is not that
large, the tight time constraints caused by the high data rates, makes that these
operations can not be run on a single processor of limited size. Moreover, the power
consumption of such a processor would be enormous. Since the goal of our work is
to investigate possible architectures which are available for the consumer market, it
is clear that the application has to be partitioned so that the separate parts can be
executed on small and efficient processors.

The beamcontrol operation is not executed very often and the time constraints
are not very tight. Therefore we choose not to partition this operation (see also

61

62

chapter 6). The operations that occur most often are beamforming and filtering.
Partitioning of beamforming is described in chapter 2, and partitioning of filtering is
straightforward. Clearly, this partitioning introduces communication; we will come
back to this in section 3.3. Nevertheless, the application is suitable to distribute over
different processing components, thus making tiled architectures an appropriate
candidate for beamforming and comparable applications.

3.1.2 Communication infrastructure

An important aspect of the architecture is the communication between tiles. The
tiles are connected by means of a network-on-chip (NoC). This NoC concept is also
extended to higher hierarchical levels, i.e. to connections between ICs and boards.

Beamforming is an application with a relatively large amount of communication
per computation, putting high demands on the NoC. The antennas signals have a
sample rate of up to 200 MS/s, which requires at least 400 MB/s network connec-
tions. To support some flexibility, such as monitoring of data streams or injection of
test or configuration data as well as some control signals, at least two connections
per link are needed. The routing of the data-streams changes seldom for the phased
array application, therefore a circuit-switched network is more efficient avoiding
the overhead of a packet-switched network [116].

3.1.3 Flexibility

As already observed in chapter 2, a more flexible system is useful for a wider range
of applications reducing cost because of the larger production volume. It would
be beneficial if the same platform can also be used for high-volume consumer
applications. Secondly, flexibility is needed to face the frequently changing standards,
so that the platform must be adapted to new standards several times during its
life-time.

In the context of beamforming applications it is also advantageous that the
platform is flexible because of the various methods for beamforming. Time delay
based beamforming is suitable for wide-band signals which is, for example, useful
in the case of radar to achieve a higher range resolution for the distance to an
object. On the other hand, time delay based beamforming is computationally more
intensive than phase shift based beamforming. The consequence is that phase shift
beamforming can compute more beams at the same time. However, with phase shift
beamforming, the bandwidth of the signals must narrower. In addition to these
methods there is also FFT based beamforming, with which many beams can be
computed at the same time, however, they can not be steered independently. That
means that the preferable method for beamforming depends on the situation and it
is desirable to be able to switch from one method to another.

The above mentioned switch from one method to another is relatively local. On
a larger scale we also want to be able to switch from searching to tracking. Searching
is necessary to find the object of interest, e.g. a satellite for broadcasting. However,
as we found in chapter 2, searching is computationally very expensive whereas

tracking an already found object is much cheaper. In practice, one might want to
change to another satellite, or it is well possible that a satellite position is lost. In
both cases one has to switch from tracking to searching and back.

3.2 ARCHITECTURE

The need to distribute the beamforming application over simple processors, as well
as the need for efficiency and flexibility leads to an architecture which consists
of several processors connected by a flexible communication infrastructure. We
choose for a so-called tiled architecture where multiple functional elements are
combined on a SoC and communication proceeds via a NoC. In addition, we choose
for a reconfigurable architecture to keep the execution of the various tasks efficient
but flexible. Below we will motivate our choices in detail.

There are many aspects of tiled architectures that we do not discuss, such
as predictability, composability, types of communication, since these aspects fall
outside the scope of this thesis. We would like to refer to [39, 104] for a discussion
on these issues.

3.2.1 Tiled architectures

Below we briefly discuss five aspects of tiled architectures that are of importance
for this thesis.

Scalability First of all the architecture has to be scalable such that it is easily
extendable with additional tiles if, for example, the platform has to be extended for a
bigger number of antennas. For example, for the beamforming applications there is a
wide range in the number of antenna signals to process and the required processing
capacity (from 256 antenna inputs and 400 G ops for the DVB-S application to
14 784 inputs and 160 T ops for radio astronomy). Also in case the number of beams
that have to be computed increases, the platform may have to be extended with extra
processing cores. The communication network also scales with adding processing
cores, whereas when cores are connected by a bus, scalability is not guaranteed.
Hence, for reasons of scalability a tiled architecture is in our case advisable, the more
so because the needed processing capacity is huge. It is so large that scalability is
needed on multiple (hierarchical) levels, as multiple chips and even multiple boards
are needed: a multiprocessor system-on-chip (MPSoC) is extended to multiple
chips on a board (MCoB) and multiple boards in a system (MBiS).

Dependability A tiled architecture is dependable since in case of broken tiles the
network can be reconfigured such that computation is relocated on different tiles
and communication is rerouted. Thus a tiled system allows for graceful degradation.
In case a tile is already broken during the production process of the tiled architecture,
the broken tile may simply be disabled.

63

64

Heterogeneity Another advantage of a tiled architecture is that the tiles can be
different in nature, i.e. the architecture can be heterogeneous. This is especially
important in our case of a hybrid system which requires a high performance, such
that tiles which are dedicated for specific tasks will be necessary. For example, some
tiles will be analogue front-ends, while others will be processing elements with
dedicated functionality or more general purpose processing elements.

Distributivity On a tiled architecture, the processing is distributed over multi-
ple cores, thereby introducing communication overhead (as communication does
not directly contribute to calculating the result of the application) and sacrificing
programmability (as data communications have to be taken into account).

Efficiency Smaller cores, such as used on a tiled architecture, are typically more
efficient as they are simpler, thereby allowing the hardware to be optimised and
faster. Furthermore, using smaller cores with small local memories is more energy
efficient by exploiting locality of reference [23]. Finally, to be cost-effective, it
is useful to use consumer market components, such a generic tiled architecture,
instead of dedicated hardware.

3.2.2 Reconfigurable architectures

The above discussed requirement of flexibility motivates that the architecture has to
be reconfigurable. Reconfigurability exploits the property that for many embedded
systems the functionality is fixed on a time scale much larger than the processing of
individual data elements. The functionality is captured in a configuration; control
signals remain fixed for a single configuration while data signals are processed, thus
offering the possibility of efficient execution. After some time the system can be
reconfigured to change (parts of the) functionality [43].

For reconfiguring a single tile, we need reconfigurable processing elements. The
main characteristic is that the operation performed on the data is changed. For
reconfiguring a tiled architecture, we also need reconfigurable communication. On
this higher level, the main characteristic is that the flow of data is changed.

In our case, reconfiguration can be applied on multiple levels. On the smallest
scale (with respect to impact as well as passed time) only parameters used for pro-
cessing, such as filter coefficients, are changed. This has no impact on the operations
performed. On a medium scale, the functionality of a single tile can be changed.
In this case the operations performed on the tile are changed, but the data streams
of the architecture are not causing further impact on the rest of the system. For
large scale reconfiguration also the data streams between the tiles change, i.e. when
re-mapping or changing the application. For example, for the beamforming appli-
cation, a small scale reconfiguration can consist of new beamsteering parameters.
A medium scale reconfiguration can be a different mapping of the application or
changing the beamforming or tracking method (e.g. due to the weather or mobility).
A large scale reconfiguration could consist of changing the beamcontrol algorithm,
using sub-arrays or multi-function radar.

3.2.3 The programming challenge

Many-core (tiled) architectures are not easily programmable with traditional pro-
gramming techniques [5]. Distributing or parallelising an application over multiple
cores is therefore mainly a manual process (also see section 4.4.6). Thus, there
are strong requirements put on the design process. In chapter 5 we will present a
method to ease the design and use of tiled architectures and to improve the automa-
tisation of parallelising applications with an approach based on a mathematical
specification of an application.

3.3 EXPERIMENTS WITH TILED RECONFIGURABLE ARCHITECTURES

In this section we discuss three examples of beamforming on tiled reconfigurable
architectures. The first example is concerned with beamforming in an audio context,
thus the data rate is rather low. This example still fits on one processor, though
reconfigurability is needed because of the necessity to switch between the various
beamforming methods (see section 3.1.3). Also the need to switch between search-
ing and tracking motivates that we need a reconfigurable processor. In the first
example we therefore choose for the MONTIUM, a coarse-grained reconfigurable
processor [43] which is optimised for streaming signal processing operations. The
MONTIUM is a very long instruction word (VLIW)-like processor with 5 arithmetic
logic units (ALUs), 10 local memories and an interconnect between them. Several
core operations, called kernels, for signal processing applications have been imple-
mented on the MONTIUM [44, 79] and [KCR:1]. For more details see appendix B.

In the second example we discuss a phase shift based beamformer with E-CMA
based beamcontrol for satellite reception of DVB-S signals. Due to the high data
rate of DVB-S, a single processor is not sufficient anymore. The only tiled platform
with several reconfigurable processors that was available as a hardware prototype at
that time', is the LEON SoC, a platform with three MONTIUM processors, a LEON2
processor [2] and a NoC. Still, in order to fit on the LEON SoC, the data rate had
to be reduced.

The third example deals with LOFAR, a large scale phased array for beamform-
ing in radio astronomy. At present no tiled architecture big enough to handle this
application is available, hence we discuss a conceptual tiled architecture for which
we assume a processing capacity of 200 M ops per tile and 64 tiles per SoC. It turns
out that for mapping the LOFAR system on such a platform we need 101 SoCs for
each of the 77 LOFAR stations.

3.3.1 Audio beamforming on a single reconfigurable processor

This experiment is split in two parts: beamforming methods on the MoNTIUM, and
beamcontrol on the MONTIUM2.

! At the time of performing this research; recently also the CRISP platform, consisting of 9 reconfig-
urable processors, became available (see [20, 98])

65

66

Beamforming methods We have implemented time delay (TD), phase shift (PS)
and FFT based beamforming on a single MoNTIUM [76]. Here, we exploited the
reconfigurability of the MONTIUM to switch between these three methods. For this
experiment an audio beamformer was used consisting of an 8-antenna ULA of mi-
crophones. The microphone signals are sampled by ADCs which are connected to a
Xilinx Virtex-II Pro Development System field-programmable gate array (FPGA)
containing a MONTIUM and a PowerPC processor, where the MONTIUM is used
for executing the beamforming methods and the PowerPC is used for control to
switch between these methods. We remark that the TD implementation is based on
a simple first order linear interpolation, whereas the PS and FFT implementations
require a 16-tap Hilbert transform filter and are based on a complex multiplication.
Further details of the implementation fall outside the scope of this text and can be
found in [76].

For reconfiguring the MONTIUM, its five ALUs each have a configuration mem-
ory which can contain a few configurations. Each of those fixes the ALU to a spe-
cific combination of operations which are repeatedly performed on a stream of data.
In addition, there is a configuration memory for the communication between the
ALUs such that, for example, they can be pipelined or used in parallel. Switching
between the various beamforming methods now amounts to choosing the right
configuration setting from the configuration memories.

Realised on the above mentioned FPGA the MoNTIUM runs at 20 MHz. The au-
dio signal is sampled at 40 kHz, so there are 500 cycles available per sample whereas
less than 30 cycles are needed (10 for TD, and 29 for both PS and FFT), such that
many beams can be formed at the same time. Since the necessary configurations
are already available in memory, reconfiguration is instantaneous. These results
show the feasibility of the MonTIUM for executing the beamforming methods and
reconfiguring between them, i.e. a light beamforming application can still be run
on a single reconfigurable processor and no tiled architecture is needed. Previous
research has shown that the MoNTIUM is far more energy efficient than an ARM
processor or an FPGA [43] and [KCR:1].

On the other hand, the implementation on the MoNTIUM takes a lot of effort,
because of the large number of functional units in combination with the multi-layer
structure of the configurations causes that the designer is confronted with a large
number of low level details for which, in addition, there are no abstraction mecha-
nisms available. Thus programming the MoNTIUM is a challenging task. This is in
accordance with earlier experience [78].

Beamcontrol The beamforming operation is straightforward; in order to evalu-
ate a more complex algorithm on a reconfigurable processor, such as a beamcon-
trol algorithm, we have implemented the MUSIC algorithm [111]. MUSIC is a spa-
tial reference algorithm that determines the DoA of signals-of-interest by eigen-
decomposition of the covariance matrix of the input signals (for more details see
section 2.4.1). The algorithm is implemented on the MONTIUM2, an experimental
architecture based on the MoNTIUM. It has a comparable amount of functional
units, but aims at higher clock frequencies by connecting more of these units di-

TABLE 3.2: Number of required resources per kernel of MUSIC

Kernel Clock cycles Percentage Time (ms)
Covariance matrix calculation 283356 18.92 1.41
Eigendecomposition 1162128 77.58 5.81
Spectrum calculation 52048 3.47 0.26
Peak selection 415 0.03 0.00
Total 1497947 100 7.49

rectly to the interconnect. However, we expect that the differences between imple-
mentations on the MoNTIUM and the MONTIUM?2 are negligible.

The different kernels of the MUSIC algorithm (see table 3.2) were implemented
and run sequentially on a single MoNTIUM2. The eigendecomposition is numeri-
cally approximated with an implementation of the QR algorithm and is by far the
most complex. The results for an antenna array of 16 elements and the MoNTIUM2
running at 200 MHz are shown in table 3.2. The conclusion from this table is that
a single MoNTIUM2 is sufficient to compute the DoA. However, since only 16 an-
tennas were used, the angular resolution is too low for the applications considered
(requiring at least 256 antennas). Since the complexity of the MUSIC algorithm
is N°, with N for the number of antennas, the limits of the MonTIUM2 Will be
reached quickly. Hence, a single MoNTIUM or MoNTIUM2 Will not be enough for
beamcontrol when the angular resolution requires a larger number of antennas.

3.3.2 A tiled reconfigurable architecture for a DVB-S beamformer

We have implemented an adaptive beamformer on the LEON SoC platform [95].
It is based on the DVB-S application and includes an 8-element beamformer and
E-CMA based adaptive beamcontrol for a single beam. Furthermore, a 25-taps FIR
filter was included for baseband processing of the QPSK modulated signals.

The LEON SoC platform consists of a LEON2 processor [2] and three MON-
TIUMS as shown in figure 3.1. The LEON2 is used for control tasks such as resource
management and interfacing. The advanced high-performance bus (AHB)-bus
connects the LEON2 to memory and to the serial and USB interfaces. The USB
interface is also directly connected to the NoC to support streaming data over USB.
In addition, the AHB-bridge connects the LEON2 and the peripherals to the NoC.

For the communication between the MONTIUM processors, a predictable circuit-
switched NoC is used [117]. Each network link between a router and another router
or processor consists of four parallel 16 bit lanes that can be used simultaneously
such that a high communication bandwidth between the tiles is achieved. The NoC
is configured via a dedicated configuration interface which is accessed through the
memory map of the AHB bridge.

The LEON SoC is realised on a Xilinx Virtex-4 LX200 FPGA. For this proto-
type realisation, the LEON2 processor and the NoC operate at 47.52 MHz, result-
ing in a bandwidth of about 380 MB/s for each link. The three MONTIUM proces-

67

68

MoONTIUM 2

MONTIUM 1 E] Router 2 i MonNTIUM 3
-------------- 2]
|
<«to USB host>> .
< > USB AHB bridge
«<serial>
I <«<AHB bus>> I
. 128 MB
Serial I/O ROM DDR2 LEON2

F1GURE 3.1: LEON SoC

sors operate at 15.84 MHz. The MONTIUMS are rarely stalled waiting for data, since
the NoC operates at three times the frequency of a MoNTIUM. Besides, a MONTIUM
can compute in parallel with communication over the network.

An application specific integrated circuit (ASIC) realisation of a similar archi-
tecture, consisting of an ARM-926 processor and four MONTIUMS, exists in 130 nm
technology [91, 92].

The beamforming and baseband processing is running on two of the MonN-
TiuMs and E-CMA is running on the third. As the DoA is changing at a much
lower frequency than the sample rate, the beamcontrol algorithm is run only every
12 samples. The third MonTIUM is therefore idle most of the time. The LEON2 con-
figures the NoC and MonNT1UMS during the initialisation phase, and it reconfigures
the NoC during operation.

The experimental realisation on the above mentioned FPGA can process about
1.5 MS/s, approximately one thirtieth of the 50 MS/s which are actually required
for the DVB-S application. Besides, only eight antennas were assumed, where 256
would be more realistic. Hence, this platform is insufficient for the implementation
of beamforming for DVB-S. Even an ASIC realisation of the LEON SoC platform
will allow the MONTIUMS to run at a frequency that is approximately only ten times
higher, so the conclusion is that for a DVB-S beamformer more than three Mon-
TIUMS are required.

More details about the implementation can be found in chapter 6 and [11, 95].

Tileo 7 Tile; 7 Tiles Tiles; Tiles 7 Tiles 7 Tiles 7

Tileo,s Tilers Tilez,6 Tiles,s Tiless Tiles,s Tiles,s Tiles,s

Tileo,s Tiley 5 Tiles,s Tiley s Tiles,s Tiles,s Tile 5

/

=
5
. . :

/
/
/

/
/

Tileo,s Tilerq Tilez,s Tiles,s Tiles,q Tiles,s Tiles,s Tiler,s

. :

Tileo,s Tiler 3 Tiles,3 Tiles 3 Tiley 3 Tiless Tiles,s Tile 3

Tileg,> Tile > Tiles,» Tiles 2 Tiles,» Tiles,» Tile >

/
/
/

Tileo,s Tilers Tiles, Tiles, Tiles, Tiles, Tiles,s Tiles,

Tileg,o Tileo Tiles,o Tiles,o Tiles,o Tiles,o

=
&

¥

FIGURE 3.2: Concept architecture

3.3.3 A conceptual tiled architecture for radio astronomy

From the previous sections it followed that a single reconfigurable processor can
handle a light beamforming application, but for heavier applications more proces-
sors are needed. In particular for the generic system for satellite reception, radar,
radio astronomy and wireless and mobile communication, as defined in chapter 2,
the architectures as discussed in the previous sections will be far too small.

In this section we introduce a concept architecture for the radio astronomy
application LOFAR. This concept architecture is homogeneous and hierarchical,
consisting of 64 processing tiles per SoC (shown in figure 3.2) and 64 SoCs per
board. Each tile can compute 200 M ops performing MAC operations. The on-chip
interconnect has a capacity of 400 MB/s (full-duplex), while off-chip connections
have a bandwidth of 1GB/s. These are quite realistic figures; in the EU CRISP
project a chip with 9 similar cores running at 200 MHz was developed [20, 98].

LOFAR LOFAR is a phased array for radio astronomy applications at low fre-
quencies (shown in figure 3.3). As explained in section 2.3.1, it consists of 77 sta-
tions with 96 antennas each. Each analogue front-end can select between a low
band from 15 MHz to 80 MHz or a high band from 110 MHz to 240 MHz. Direct
digital conversion with a 12bit 100 MHz ADC is used allowing simple front-ends
without mixers and improving the performance [21].

69

NN

CHAPTER 3. TILED RECONFIGURABLE ARCHITECTURES FOR BEAMFORMING |

N

M

\© /‘ NA

A\

U

FIGURE 3.3: LOFAR station

[

It
%‘ beamformer correlator
analogue polyphase beamformer polyphase H F
front-end Y filter bank filter bank
< > i »

<
Station stage 1 stage 2

FIGURE 3.4: LOFAR processing chain

The processing chain is based on a Fourier transform followed by beamform-
ing, in turn followed by correlation. All three techniques provide selectivity in
their own domain, i.e. Fourier transform in the frequency domain, beamforming
in the spatial domain, and correlation in the time domain. In LOFAR the original
Fourier transform is replaced by a polyphase filterbank, where a polyphase filter
bank consists of a decimation over a bank of FIR filters, followed by an FFT.

The (simplified) LOFAR processing chain is shown in figure 3.4. The polyphase
filterbanks followed by beamforming are performed in two stages to realise hierar-
chical beamforming. The first stage is per station (96 antennas per station), the
second stage combines the signals from all stations. In the first stage there is a
polyphase filterbank for each antenna which splits the antenna signal into 512 sub-
bands, of which 216 are selected. Each polyphase filterbank uses 1024 16-tap FIR
filters and a 1024-point FFT, where the negative frequencies are thrown away result-
ing in 512 sub-bands. For each station of 96 antennas the results of the polyphase
filterbanks are beamformed in a maximum of 24 beams.

In the second stage the polyphase filterbank splits the resulting signals into 256
sub-bands of about 1kHz each, after which the beamformer combines the signals
of all stations. Finally, the resulting signal is correlated.

B

50MB/s 50MB/s 50MB/s sMB/s 43MB/s

3%x43MB/s

88
86
b
aEas

50MB/s 50MB/s 50MB/s 5sMB/s

fa
S
fa
S

ses
2es
288

1

b

50MB/s 50MB/s 50MB/s sMB/s

FIGURE 3.5: LOFAR mapping for each antenna

Mapping We have mapped the processing chain for LOFAR on our concept archi-
tecture [15]. The mapping of the first stage is shown in figure 3.5. Each tile in our
concept architecture has sufficient processing capacity to calculate 64 FIR filters
per sample, such that 16 tiles are needed for all 1024 FIR filters for each polyphase
filterbank. To distribute the 1024-point FFT, 36 tiles are needed.

Concerning the communication bandwidth, each link has a 400 MB/s capacity
in each direction. The actual bandwidth which is needed is indicated in figure 3.5.
As can be seen, there are two links where the maximum capacity is reached.

Such a SoC is required for each antenna of a station, resulting in 96 SoCs. Fi-
nally we remark that the beamformer (BF) is distributed over all these 96 SoCs
plus four extra SoCs to combine the results of the 96 outputs of the distributed
beamformer.

Without going into details we remark that the data reduction of the first stage is
so big that the second stage can also be executed by the four extra tiles mentioned
above. The end result is a single beam. For the correlation another SoC per station
is needed. For further details, see [15, 21, 22, 36].

QQO STINLOTLIHOUV T19VINDIINOOTY AdTLL HLIM SLNIWIIIdX] ‘€€ @QQ

72

In total each station requires 101 SoCs (1 for each antenna, 4 for the later stages
and 1 for correlation) each having 64 tiles with 200 M ops, giving each station a
processing capacity of 101-64-200 ~ 1.3 T ops. With 77 stations, the total processing
power is 77 - 1.3 ~ 100 T ops. About another 60 T ops are needed for computing
maximally 24 beams, and for post-processing and control [21].

It turned out that the mapping of the computations is relatively straightforward,
whereas the mapping of the communication is more difficult because there are
many data-streams at different rates which must be synchronised. Besides, some
of these data rates are close to the maximum capacity of the network links. For
these reasons we performed a simulation of the communication infrastructure of
our conceptual tiled architecture.

Simulation On tiled architectures, computations are distributed, thereby requir-
ing communication. We have simulated the communication infrastructure in the
tiled concept architecture in SystemC [15]. It uses FIFO buffers and back-pressure
(full buffers stall the computation) for ordering and synchronisation, and for decou-
pling the sample rates of ADC tiles (that represent the antenna input signals) and
the clock speed of the NoC. The use of FIFO communication and back-pressure
are based on concepts from dataflow process networks (PNs). We will come back
to this during the discussion below.

In this simulation we tested three scenarios. In the first scenario we simulated
the decoupling of the sample rate of the ADC from the clock speed of the NoC.
The simulation was performed with 200 MS/s ADCs and a NoC clock speed of
200 MHz, 100 MHz, 150 MHz and 101 MHz. Note that the ADCs produce 16 bit
samples and the NoC operates on 32bit words, so there is enough bandwidth in
all four speeds. In the first two cases, the rates are the same or an even multiple
requiring no decoupling. In the last two cases the rates are different, requiring
buffer space to handle the delay when the clocks do not match. In all cases the
FIFO buffers successfully decoupled the data rates.

The second scenario connects four ADCs to a single processing tile. The first
connection uses five hops, the second four and the third and fourth use two hops.
The ADCs again run at 200 MS/s and the NoC at 101 MHz. In the test scenario the
buffer spaces were large enough to successfully stream data to the processing tile,
be it that shorter paths need more buffer space to delay the samples until the sample
from the longest path arrives. Thus, the buffers synchronise the data streams at the
processing tile.

In the third scenario, configuration data is periodically added to the data stream
varying the data rate. By adding the configuration data to the data streams, the
processing tiles reconfigure as the data flows through the system ensuring all tiles
reconfigure with respect to the same sample. This avoids the computation of use-
less data because the system is computing results that are half processed in one
configuration and half in the next. Results show that spare network and process-
ing capacity successfully deals with the varying data rate and the reconfigurations
are synchronised with the data.

3.3.4 Discussion

The experiments show a large number of tiles are needed, i.e. even for the smallest
application (DVB-S) we need much more than three tiles (at least 64 times more
to process 256 instead of 8 antennas, and that is assuming a single tile can handle
the data-rate of DVB-S).

The tiles provide modular building blocks which are used in combination with
a NoC to extend the architecture with additional processing capacity. The reconfig-
urability provides flexibility. Yet, a tiled reconfigurable architecture requires that
the application is partitioned so that it can be mapped on the SoC and that com-
munication is explicit so that it can be mapped on the NoC.

In order to support the partitioning of applications and to reduce the effort of
managing communications, thereby improving programability, the use of dataflow
models is proposed. An introduction to dataflow is provided in appendix A; here
we only mention the relevant properties of dataflow models.

A partitioned application is represented as a set of dataflow processes, con-
nected by channels. Thus, processes represent computation and channels repre-
sent communication. Such a representation facilitates mapping the partitioned
application (the processes) onto a SoC. Processes can only have explicit commu-
nication via channels, i.e. they can not have shared state. For the beamforming
application, shared state introduces a central bottleneck to the memory requiring a
huge amount of bandwidth because of the high data rates of the processed streams,
and should therefore be avoided. Additionally, the explicit communication facili-
tates mapping the communication streams onto the NoC. For beamforming, data
streams must be synchronised so that the correct data (data with the same sam-
ple time) is beamformed, even though the data can take different routes through
the network thereby experiencing different delays. In addition, managing data be-
comes easier if the data can be assumed to be in-order and that no data loss occurs
during communication. These properties are provided by the channels, as data in
the channels remains ordered and if a channel is empty a process is stalled thereby
synchronising the inputs of a process until all input data is available. These data-
flow concepts were already used above in section 3.3.3 to decouple data rates and to
synchronise data streams. In summary, the use of dataflow models forces the use
of ordered data and separate state at the applications level, thereby allowing the
application to be partitioned and mapped on a tiled reconfigurable architecture. A
further more detailed motivation for the use of dataflow in embedded systems is
given in section 4.1.3.

3.4 CONCLUSION

In this chapter we have explored tiled reconfigurable architectures for the appli-
cation domain of beamforming applications. Resulting from the requirement of a
generic beamforming platform, we find that such an architecture must support dis-
tributed processing as the large number of antennas (over 256) and high data-rate
(over 50 MS/s) of the beamforming applications do not allow enough time to pro-

73

74

cess all computations on a single processor. Furthermore, with such high-data rate
streams, even with distributed processing, each processor can compute only a few
operations before the next sample arrives, thus there is a relatively large amount of
communication per computation. Finally, the architecture must provide enough
flexibility to execute the various beamforming applications, as well as the different
beamforming methods and the ability to switch between searching and tracking
algorithms.

Tiled reconfigurable architectures possess scalability, flexibility, and efficiency.
As such, they could provide a suitable architecture for a generic beamforming plat-
form.

Three experiments with beamforming on tiled reconfigurable architectures con-
firm the above characteristics. As a first example, we have implemented audio
beamforming on a single reconfigurable tile, supporting multiple beamforming
methods by reconfiguration, and a beamcontrol algorithm. Thus, reconfigurabil-
ity provides sufficient flexibility, but for the applications presented in chapter 2 a
single tile is not enough. The second example implements a beamformer for the
DVB-S application on an architecture with three reconfigurable tiles. From this
implementation it follows that beamforming can successfully be partitioned over
multiple tiles with a beamcontrol running on another tile. However, available re-
alised tiled architectures are too small for even the smallest of the beamforming
applications. Therefore, the third example is a conceptual tiled architecture for
a large radio astronomy application, LOFAR. The architecture consists of 64 tiles,
that can perform 200 M ops each, and full-duplex 400 MB/s network links. LOFAR
requires 101 SoCs for each of its 77 stations, totalling 100 T ops. The partitioning
and mapping of the computations for LOFAR is relatively straightforward, however,
mapping the data streams that are communicated is more difficult because there
are many data streams at different rates which must be routed and synchronised.

We conclude from the above experiments that a tiled architecture does provide
the necessary scalability and flexibility, but that a large number of tiles are needed
for the beamforming applications presented in chapter 2. A second conclusion is
that executing a large beamforming application on a tiled architecture requires par-
titioning of the application and thereby explicit management of communication.
Furthermore, the implementation on the used reconfigurable processor requires a
lot of programming effort.

The dataflow domain provides a useful model for partitioning; processes rep-
resent parts of the applications and channels represent explicit communication.
Furthermore, FIFO-buffers as an implementation of channels provide ordering of
data, synchronisation and decoupling of data rates. These features can be exploited
to add configuration data to data-streams, thereby synchronising reconfiguration
with the data stream, which was verified for the last experimental architecture.

CHAPTER

Model-based design of multi-domain
systems

ABSTRACT — The complexity of designing embedded systems requires a unified
model-based design approach. Analysis of the application domain has shown that
we need a mixed CT and DT model to include the environment and analogue hard-
ware for verification. Furthermore, the choice for a tiled architecture necessitates
partitioning the application, for which we use the DF domain. In this chapter we
will present a unified perspective on signals and components for these domains.
There are many tools for mixed-domain modelling, but current tools have problems
modelling time. Furthermore, a survey of existing tools shows there are no tools
supporting model-based design with model transformations for the CT, DT and DF
domain. Therefore, we will propose such an approach called Un1T1. Un1TI is based
on mathematical definitions of models to support unified mixed-domain modelling,
including exact time delay components and model transformations. It is supported
by a design-flow that uses these model-transformations to transform a (formal)
specification into a division over the environment, the architecture (analogue and
digital hardware) and the application (software), as well as a partitioning of the
software over a tiled architecture.

Designing, modelling and verifying embedded systems is a big challenge; one of
the key problems being the interaction of the system with the physical world (its
environment) leading to different views on for example time. A second problem
consists of the strong requirements concerning the correctness (the behaviour of
the system adheres to the specification) and robustness (coping with errors and
unexpected inputs from the environment) of the hardware and software. Conse-
quently, the need to design embedded systems in an integrated fashion, including

Parts of this chapter have been published in [KCR:3], [KCR:8], [KCR:10] and [KCR:14].

76

that verifiable correctness, is widely recognised [13, 17, 53]. Furthermore, when
designing such complex systems it is useful to apply model-based design, i.e. the
iterative and incremental development of a single reference model, because it short-
ens the design cycles and integration is part of the design process early on.

A specification of an embedded system describes its functional behaviour and
a set of requirements. For a design process based on model-based design, such a
specification typically includes a formal specification of the functional behaviour.
Such a formal specification forms the initial model for the design process.

In this chapter we will first motivate the need for model-based design in more
detail. Such a model-based design approach needs support for multiple domains.
This includes exact modelling of the CT domain to support the interaction of an
embedded system with the environment (among others), as we have found for the
phased array beamforming application in chapter 2. Furthermore, the DF domain
needs to be included for modelling applications running on a multi-core SoC with
a NoC, as we found in chapter 3 for beamforming applications on a tiled reconfig-
urable architecture. Finally, as the starting point is a formal specification, it very
useful to be able to define models using mathematical definitions.

Thereafter in section 4.2, we will discuss signals and components in mixed do-
main systems and we will present a unified perspective on signals and components
based on time for the CT, DT and DF domain, including their interaction. Current
mixed-domain modelling tools perform simulations by discretising a global (sim-
ulation) time and advancing the simulation by passing values between model com-
ponents at each time step. This introduces inaccuracies when time transformations
such as time delays are used, which is analysed in detail in section 4.3.

A survey of current modelling tools is presented in section 4.4. As we will see,
there are no tools supporting model-based design using mathematical definitions
and model transformations, and supporting the CT, DT and DF domain, nor are
there tools providing exact modelling of time transformations in the CT domain.
Therefore, UN1TI is proposed in section 4.5, a design flow and modelling and sim-
ulation framework that does support all these aspects. UN1T1 forms the basis of a
design flow that uses model transformations for the design steps in section 4.6.

4.1 MOTIVATION

The complexity of today’s embedded systems requires a simultaneous considera-
tion of the environment, the hardware and the software when designing the system.
This includes aspects such as channels, an analogue front-end and digital process-
ing, but also concurrency and robustness of the software. All these aspects are often
interdependent and thus must be simulated and verified in a single model. Such an
approach is supported by model-based design, which is presented first, followed by
a discussion on the necessity to integrate the environment, and by an elaboration
of the usefulness of the dataflow domain for modelling software. Finally, we will
motivate the usefulness of mathematically defined models.

4.1.1 Model-based design

In this section we will motivate the need for a single model and a model-based
design approach that iteratively develops this model with transformational design
steps.

4.1.1.1 Systems engineering

A typical design approach for complex multi-domain systems such as embedded
systems is systems engineering [13]. Systems engineering is a design approach
which aims at using a holistic view with a life-cycle orientation that addresses all
phases of the system design. Throughout the design it attempts to unify all in-
volved contributors into an interdisciplinary effort. It uses well defined and spec-
ified system requirements which can be verified and validated down to a detailed
implementation.

System design is greatly aided by the use of models, which provide an abstrac-
tion at different levels of detail or functionality. The models can also complement
each other by providing different views of the system.

An often advocated method that fits the systems engineering approach well
is model-based design [13]. Traditional design follows the waterfall model [13],
which has the disadvantage that the next design phase has to wait for the previ-
ous to finish and therefore making changes late in the design cycle very costly. The
incremental and iterative design steps of model-based design addresses these short-
comings by integrating part of the design as soon as possible and refining the de-
sign with small steps.

Designing is performed using a top-down approach to decompose a larger sys-
tem into smaller blocks, to make sure these blocks effectively fit together and to
manage complexity. The design steps consist of analysis (goals and research), syn-
thesis (development and implementation) and evaluation (verification and valida-
tion) and are illustrated in figure 4.1). During the research phase the goals and
requirements are analysed and different options to satisfy the requirements are ex-
plored (diverge). Ideally, this results in a formal specification of the selected solu-
tion (converge). The development phase uses this formal specification to synthesise
a system in several steps. During evaluation the synthesised system is verified, by
tests or simulation to conform to the requirements and specifications. Validation
confirms whether the goals are met or not. Depending on the results the design
can be refined, starting the next design cycle.

When designing a mixed signal embedded system the traditional approach
uses a combination of e.g. mathematics for analysis, SysML/UML for (system)
modelling, Simulink for functional simulations, SystemC or a hardware descrip-
tion language (HDL) for digital hardware implementations and C for software im-
plementations [13, 63, 70, 71, 99]. This means a number of tools are used, each with
its own model of the system. This complicates holistic iterative system design and
makes the trade-off of what to do in which domain more difficult.

77

78

ost
Uogmue\ﬂ?\6

Svalyatio®
*imulaion mod®

N €valuation
ey LoD
hication yaidet®

FIGURE 4.1: Model-based design process

4.1.1.2 Model transformations

Key to model-based design is the use of a single model with a transformational
design process, i.e. model transformations are used during the design steps. For
example, in order to decouple the system design from an architecture, a high level
model should be architecture independent and a model transformation can be ap-
plied to generate a model for a specific architecture.

For each step of the design process, more detail is added to the model. The ini-
tial model uses a more abstract implementation of the functionality. During analy-
sis the design is decomposed into smaller blocks. The smaller blocks are extended
by supplying more detail per block. In the development phase the more abstract
blocks model (ideal) functionality, and these blocks can be combined with more
developed blocks that also include implementation details. This facilitates interdis-
ciplinary work, such as when performing hardware/software co-design where it’s
not yet clear which hardware will be used or when different options are evaluated.
The implementation itself can consist of for example block schematics, hardware or
software. Simulating the model during the design process helps to evaluate design
decisions and test implementations.

When performing a model transformation, we must ensure the transformed
model is still correct, i.e. that the functionality has not changed. Thus, model
transformations must be verifiable and correctness preserving.

4.1.1.3 Design space exploration

Another important advantage of model transformations is that it facilitates design
space exploration. Decomposing a system involves division over domains as well as
division within a domain and often includes design decisions and trade-offs which
must be evaluated by the designer. Thus, it is very valuable for the design process to

evaluate the results after a transformation and to be able to revert the transforma-
tion and try alternatives. For example, a model can be transformed to an equivalent
model which represents a mapping to an architecture, or the transformation maps
the model to a predefined architecture.

4.1.2 Environment

Many embedded systems interact with their physical environment. For example, a
mobile phone sends and receives radio signals, has light and proximity sensors, a
microphone and speakers, etc., all interacting with the environment. This environ-
ment and the analogue interfaces are modelled in the CT domain. The computa-
tions of the system are performed in the DT domain by digital hardware. For ex-
ample, in a radio receiver the CT processes include the actual radio signal together
with the distortions introduced by a channel (noise, interferers, etc.) and the ana-
logue front-end of the receiver, whereas further processing of the digital hardware
consists of filtering, demodulation, error correction, etc. in the DT domain.

Moreover, the processing in the DT domain can adapt and react to changes in
the environment. This introduces feedback that spans multiple domains. It is there-
fore important to be able to analyse and verify these interactions in a single model
that includes all domains. A system with both continuous and discrete dynamic
behaviour is called a hybrid system. As an example to illustrate the necessity to in-
tegrate the various domains, we mention an ADSL modem, which uses adaptive
transmission based on cable conditions. We must include the noise and distor-
tions of the cable to exactly verify the correct operation of the coding, modulation
and error-correction, as worsening or improving cable conditions result in differ-
ent communication modes that are negotiated between the modem and a cable
network controller. Without including the environment in the model, a hardware
prototype must first be developed to verify the correct operation. Clearly, this is
far too late.

Current design tools (see [17] for an extensive survey of multi-domain system
design tools) implement the interaction between the above mentioned domains
by discretising a global simulation time and representing signals as a sequence of
values. This prevents exact transformations with respect to time, such as for sys-
tems with variable time delays or multi-rate systems. This time step should be
small enough to meet the requirements of all the components in the system, as the
whole system under design is evaluated at this time step. However, this may result
in extremely inefficient simulations as several components, such as e.g. integration,
may require a very small time step to achieve enough accuracy. In addition, it will
not be possible to capture all timing issues in one global clock. For example, a
time delay may depend on changing circumstances in the real world and thus will
not be predictable during simulation. Since existing simulation tools also consider
CT as a sequence of discrete values, the best they can offer for the value of a de-
layed signal is an interpolation between known values on moments that are close
to the delay. Here too, to make this interpolation accurate, the chosen time step
has to be very small. Summarising, both aspects — using values for continuous

79

8o

functions and a single global time step for simulation — cause that simulation ei-
ther becomes less accurate or less efficient. We will discuss these problems in more
detail in section 4.3.

Modelling the physical environment should be exact in order to correctly vali-
date the design. Approximations like interpolation introduce inaccuracies that are
modelling artefacts; we can not differentiate between the error caused by the mod-
elling tool and an error caused by an incorrect specification or implementation.
For example, testing algorithms for wideband beamforming or time shifted sam-
pling relies on this; signals arrive at different antennas with different time delays
because of path length differences. Even for narrowband beamforming; if the an-
tenna elements are moving with respect to the source, they experience the Doppler
effect. For antenna elements with different speeds, for example on a moving ship,
this effect can not be represented by a simple frequency shift. Instead time-scaling
must be applied. Other examples are path length differences for differential pairs
or network delays.

Note that in this thesis the term exact is used in the context of a simulation tool
executing on a computer. As such, the exactness of the results are inherently limited
by the machine precision. However, in the approach we will present, the accuracy
is limited only by the machine precision, while other tools will introduce much
larger inaccuracies in the order of the step size used for approximation. As such,
we will use the term exact for results limited by the machine used for simulation
in contrast to limited by the tool used for simulation.

4.1.3 Dataflow

Software for streaming applications can be modelled quite naturally with dataflow
models. A dataflow model is a graph of nodes (processes) connected by edges
(channels); data tokens are processed inside nodes and sent from one node to an-
other through the edges. Tokens are abstract in the sense that they may have any
internal structure. A process may consume and produce several tokens at a time;
when there are not enough tokens available on the input edges of a node, that node
will not execute (fire). The condition that enables firing is called the firing rule.
Consumption and production of tokens is instantaneous in the model, while a pro-
cess can have execution time. Note that executions can overlap: if enough tokens
are available to fire, the process directly executes even if the process is already ex-
ecuting. This can be restricted by introducing self-edges, i.e. channels that loop
back to the process itself. Dataflow is presented in considerably more detail in ap-
pendix A.

Dataflow models are used for representing software for multi-core systems. The
DF domain provides a model for stream processing with explicit communication.
Processes in the dataflow model represent computations and channels represent
communications. One or more processes can be mapped to processing tiles on a
SoC, while the channels are mapped on its NoC.

It is important to differentiate between dataflow models, dataflow analysis and
dataflow execution. The application executing on a multi-core platform is mod-

elled as a dataflow graph, representing a partitioned or parallelised application.
Dataflow analysis of this model then offers a prediction of the real-time perfor-
mance characteristics for a real hardware platform instantiation. Dataflow execu-
tion semantics ensure we do not have to worry (from the application’s perspective)
about losing data or receiving data out of order, i.e. communication and synchro-
nisation, when running applications on this platform.

Application modelling Dataflow processes can be seen as mapping sequences
of inputs to sequences of outputs, or functions on streams [55]. They are therefore
useful for parallelising streaming applications [11] and mapping streaming applica-
tions on multi-core architectures [39, 45, 115]. Processes are mapped onto compu-
tational resources and channels are mapped onto communication resources.

As processes are independent, they may not influence each other besides the
explicit inputs and outputs, i.e. dataflow processes must be side-effect-free. This
ensures the processes have no shared state, all communication is explicit, thereby
allowing us to map one or more processes to independent tiles. Furthermore, these
processes can be moved to different tiles when necessary.

Verification When designing embedded systems, we must be able to verify the
correct operation and the performance of the system. This also includes the soft-
ware of the system. Verification can be performed by simulation or by using anal-
ysis techniques.

For analysis of the dataflow model we need to take into account execution time,
communication, buffer capacities and scheduling. Dataflow models have no no-
tion of time, only ordering. For metrics such as throughput and latency to make
sense, and allow them to be determined by the analysis techniques, processes in the
dataflow model are annotated with execution time. Methods are then available to
analyse deadlock and race conditions, to calculate buffer sizes, and to determine
or estimate latency and throughput of tokens streaming through the graph (see
e.g. [115]). The result of the analysis is then used to properly dimension the sys-
tem [39, 115].

For simulation, the dataflow model is executed, requiring an execution model
(determining how a model is executed for simulation). Our execution model for
the DF domain is presented in section 5.1.3.

Abstraction Dataflow models have a number of properties that provide a useful
abstraction from scheduling, communication and synchronisation details.

All dataflow models have self-timed execution, i.e. a process can execute as
soon as all input data is available. Therefore there is no need for global control of
the execution. However, for restricted dataflow models with fixed token rates, a
static schedule can be determined on beforehand, removing scheduling overhead
completely [57].

In the DF domain, tokens in channels remain ordered, as dataflow models are
order-preserving. As dataflow models are deterministic, data can not be lost during
communication.

81

82

Channels are of unbounded capacity, but buffers between processes are mod-
elled by two channels in opposite directions; one carries the tokens to be communi-
cated and the so-called back-edge models empty space in the buffer. A process can
therefore only execute when there is enough space in its output buffers. Thus, a pro-
cess is stalled if the tokens are not consumed from the output buffer fast enough by
the next process. This is called “back-pressure” and results in automatic synchro-
nisation in parallel execution.

4.1.4 Mathematical foundation

The model-based design approach typically uses a formal specification, which pro-
vides a mathematical description of the functionality of the system. This specifi-
cation forms the initial model used during the design process. As such, it is very
useful to represent models using mathematical definitions'.

4.1.4.1 Mathematical definition

A mathematical definition of models allows one to easily define and extend the
model from the (formal) specification. The specification thus provides a conve-
nient initial model, against which model transformations can be verified. Such
model transformation are also formally specified, and can thereby be proven to be
correct.

A mathematical model also represents a structural hierarchy. Functions repre-
sent model components and such functions can be defined using other functions
(sub-components). Furthermore, the arguments and results of functions can be
named and as such be used to represent connection between components.

The mathematical model is evaluated by calculating the result when applying
the function to an input. Evaluating the function over a range of inputs is akin to
performing a simulation of the model. In a sense we use executable mathematics
for simulation. We define that the output of a function is calculated as soon as all
arguments of the function are available.

Mathematical equations define relations and all equations are valid simultane-
ously. A mathematical model is therefore parallel by nature.

A mathematical model is very suitable as a model for system design, because
of the qualities described above. The idea of executable mathematics is not new.
In fact there is a whole research field on reasoning about programs and ensuring
a “correct and meaningful correspondence between programs and mathematical
entities in a way that is entirely independent of an implementation” by providing
the denotational semantics of a program [89]. Surprisingly, there are only a few
model-based design tools with a mathematical basis. We will discuss these tools
further in section 4.4.

' As a model only provides an abstraction which can be represented in many ways, a mathematical
definition is not a necessity for model-based design.

4.1.4.2 Functional languages

In a functional language, a computation is considered as evaluating a mathemat-
ical function, i.e. the basic method of computations is applying a function to an
argument [47]. Programs are defined by equations instead of statements as in im-
perative languages. A functional language is therefore close to mathematics and
provides a nice fit to represent mathematically defined models in.

Functions are first-class in functional languages; they can be used as arguments
and results of other functions. Such functions are called higher-order functions.
Higher-order functions also enable partial application; a function is applied to part
of its arguments and returns a new function on the remaining arguments. Instead
of applying a function on a tuple of arguments, a function can also be applied to
its arguments one by one, called currying.

We choose the functional language Haskell [1]. Haskell is a statically typed,
lazy, pure functional programming language. Pure means that a function has no
side-effects (all observable effects of the function are its results) and the evaluation
of a function always gives the same results for the same arguments, as we expect of
a mathematical function. Lazy means the evaluation of the arguments is delayed
until its value is actually required. Statically typed means the types of functions
are checked at compile time. Haskell also has type interference, i.e. the types are
deduced from the function definition and its context. For more background on
functional languages, we refer to [47, 72].

4.2 TIME, SIGNALS, COMPONENTS AND SYSTEMS

Systems in the field of engineering are often divided into components that inter-
act, in order to manage the complexity of designing systems. For CT and DT sys-
tems, the interaction between components is by signals, which represent measur-
able quantities over time for transmission of information, or more general, signals
represent data over an independent value such as space or time. A system is char-
acterised by how it responds to input signals, in other words, components denote
signal transformations.

4.2.1 Continuous and discrete time signals

We differentiate between continuous time and discrete time. Continuous time is
unbroken or whole, i.e. defined for all time. Discrete time quantises time to distinct
separate moments in time. Thus there are two kinds of signals:

o Signals in the CT domain are functions of time, i.e. they represent the value
of the signal over all time.

o Signals in the DT domain are values at discrete moments, also called sam-
ples.

These representations are a conscious choice. For a CT component, the input signal
represents a function over all time. Therefore, its time reference can be changed,

83

84

the signal can be delayed or time can be scaled (e.g. speed-up). However, for a DT
component the input signal is a value at a discrete moment in time. This value is
linked with a sample time, but the DT component can not and should not be able to
influence this time. From the perspective of the DT component, the input signal is
just a value, but a value that changes over time. Therefore, the input signal of a DT
is also a function of time, however, this time is not accessible to the DT component,
i.e. time is defined at a higher level for the DT component and is irrelevant for its
operation. We do not want a DT component to operate on a list of values over all
time either, because this would give the DT component access to all future and past
values. Only having access to the current value forces a DT component to make its
state explicit, i.e. state is an explicit input and output of the component. As such
there is only a notion of the next value. Thus, the state and output of an operation
change with a new input value, irrelevant at which time this is.

Summarising, a function that takes a signal and transforms it to a new signal is
called a signal transformation. In case of DT signals, the implementation of a signal
transformation corresponds to an operation or function on a value, i.e. the signal
is a value. In case of CT, a signal transformation corresponds to a function on a
function (the signal as a whole), i.e. it is a higher order function. As such we have
extended the classical meaning of signals a bit, although signals still conceptually
represent a time-varying quantity. Furthermore, a CT signal transformation can
change the time reference, e.g. the output signal is a time delayed input signal.
Other transformations with respect to time are reflection or scaling.

4.2.2 Signal flow diagrams

Signal flow diagrams or block diagrams are popular in system design tools because
of their intuitive use and ease of understanding [17]. We will shortly discuss their
connection with components and signals. Components in such diagrams denote
signal transformations and arrows denote signals. Composition of signal transfor-
mations is analogous to connecting blocks in a signal flow diagram.

To compose components from different domains, the signal representation
must be changed. To go from the CT domain to the DT domain, the signal is
sampled at specific sample times by an ADC. To go from the DT domain to the CT
domain, the sample is held until the next value by a digital-to-analogue converter
(DAC).

4.2.3 Signals and components in dataflow models

We will generalise this notion of signals and systems to include the DF domain.
This enables us to include DF in a model with CT and DT, where components and
their interaction have the same meaning for the DF domain as for the CT and DT
domain.

An important observation is that processes of a dataflow model also transform
data. Therefore, components in the DF domain can also be represented as signal
transformations. In the DF domain, signals are lists of tokens. In all domains com-

ponents are signal transformations. However, the perspective on the data that is
transformed in each domain is fairly different, as is the representation of signals
in each domain. To go from the DT domain to the DF domain, samples become
input tokens for the DF component. To go from the DF domain to the DT domain,
output tokens become samples for the DT component. A DF component can be
combined with a CT component via a DT component.

Furthermore, a dataflow model has no notion of time but the CT and DT do-
mains do. However, when a DF component is combined with CT or DT compo-
nents, the latter domains determine the time that tokens for the DF component are
produced (sampled) and therefore introduce a time reference to the DF domain.
Execution time of the DF component then determines the time at which the out-
put tokens are produced. Note that the DF component can only be connected to a
DT component, because we assume the sample time of the DT domain determines
the production time of the corresponding DF token.

4.2.4 Other domains

The DF domain is related to the synchronous/reactive (SR) domain. Synchronous
means that computations are considered instantaneous and reactive means the
model reacts to events from the environment. In the SR domain, physical time
is replaced by an ordering at global clock ticks. The DF domain abstracts time
even further; there is no global ordering, only dependencies. For completeness:
the discrete event (DE) domain defines passage of time between clock ticks, while
for the DT domain all samples have a corresponding physical time [60]. In this
thesis we will limit the scope to the CT, DT and DF domains.

4.3 THE PROBLEM WITH TIME

Consider a simple system consisting of a continuous time sine source connected
to a time delay block, followed by an ADC, a bias (offset) and a sink which plots
the output. The CT part and DT part are indicated in the figure:

U | At A/D +n —>:]

< >4 >
Continuous Time Discrete Time

FIGURE 4.2: Mixed CT/DT system block diagram

4.3.1 Notions of time

In such systems we identify different notions of (modelled) time:

o the instants when the designer wants to know the behaviour of the system,
the simulation time,

85

86

« the instants when continuous information from the environment is sampled
by, say, an ADC, the sample time,

« the time steps that are necessary to numerically approximate functions (e.g.
an integral), the approximation time,

o the time that has elapsed during processing, the execution time,

« the time locally, possibly transformed by e.g. a time delay, the local time.

The last notion of time is necessary to represent relativity: different distances from
a source lead to different local time references relative to the source. From the
perspectives of components at different distances, the source is at a different time,
yet the source is defined for a single time reference. Therefore, each component at
a certain distance must have its own local time reference to the source, i.e. time
is a local property and time is relative. This occurs for example for a front-end
with multiple signal paths, which might have slightly different path lengths, thereby
modelling non-ideal common mode noise rejection.

We will show that time must be a local and relative property of a component
in the model to accurately model time transformations.

4.3.2 Global solver

There are many mixed continuous/discrete time modelling tools [17]. Existing tools
perform a simulation by extracting a set of ordinary differential equations (ODEs)
from the model. Some tools such as MapleSim (see section 4.4) optionally perform
symbolic simplifications on this set. Then the set of equations is (in the general
case) solved numerically, i.e. such solvers numerically approximate the differen-
tials. For a mixed CT/DT model, signals in the DT domain are represented as
piecewise-continuous for the solver.

Typical solvers used in tools are the Euler methods or the Runge-Kutta meth-
ods [61, 99, 102]. Such solvers operate iteratively with a fixed or variable step size.
Each step the equations are evaluated and the results updated according to the al-
gorithm.

This iteration step is a time step, i.e. iteration is performed over time. Time
is thus a global property of the model as it is applied to the complete equation set,
which represents the complete model. Furthermore, the same solver is used for all
components in the model for the same reason.

4.3.3 Discretisation of time

Simulation for existing tools discretise global time into time steps to iteratively
solve the set ODEs over time. Thus, although the different notions of time are in
principle unrelated, they are coalesced into a global time. At each simulation step
the complete model is evaluated and a resulting value is calculated.

So, the inputs and outputs of the model components are the values at a certain
global time step. This means that the time step determined by the solver for nu-
merical approximation of a differential equation is applied to all equations. The

global time step causes the whole system to be evaluated, while it is very well pos-
sible that most of the system does not need to be evaluated at this fine-granularity,
reducing efficiency; for example, the DT domain most likely has a sample period
much larger than the approximation step, of e.g. an integral in the CT domain,
which often has to be very small for sufficient accuracy. We have experienced this
when simulating one second of a phased array antenna system, which took hours
in Simulink (also see chapter 6) because of the small time step needed for sufficient
accuracy.

However, as we will see next, discretisation of a global time is even more prob-
lematic in case of time transformations.

4.3.4 Time transformations

In summary, existing simulation tools do not distinguish different notions of time.
All the notions of time are coalesced into a global (simulation) time. The solver
must determine the time instants to solve the set of equations. Furthermore, there
is a single representation of signals as values at a certain simulation time.

Consider the very simple Simulink system in figure 4.3 consisting of a sine
wave source, a (variable) time delay and a scope. A 1Hz sine with a 0° initial phase
is used. The (maximum) time step size for simulation is 0.04 s, so 25 simulation
results per period. The step size is not adjusted by Simulink, because the model
contains no differential equations (only algebraic). The time delay is 0.1s, which is
deliberately chosen not to fit the step size.

A plot of the simulated output is shown in figure 4.5, a shifted sine wave as
expected. The ideal result is a sine wave with an initial phase of —27- 0.1, but when
compared to the output of the delayed sine wave of figure 4.3 the Simulink output
has an error (shown in figure 4.6). This error is caused by interpolation. The time
delay block buffers values each time step and retrieves a value for the delayed time.
When a value at the delayed time is not available, the result is interpolated from
the surrounding values. The error is directly related to the frequency of the signal
and the step size. Higher frequencies need smaller steps or will give larger errors.
When the simulation time steps are large compared to the frequency, this error can
be quite substantial.

One might expect that a solution is to make the time step a multiple of the
delay as the delay block can then retrieve the exact value. There are at least three
problems with this:

a) if the delay is small the step size needs to be small, resulting in many (fixed)

steps and thus inefficiency,

b) if multiple time delays are used, without a common factor, separate time
steps for each time delay are needed for accurate results,

c) ifthe delay is variable, the current time step depends on a unknown delay in
the future.

As in general the time delay can be variable, in Simulink the delay is not even taken
into account when determining the time step. The consequence is that if a value

87

88

i

I

~

I -
¥ > T%%(ol Ramp ZOHDS4 Soopel
Sine -
‘ariakile Scope
0.1 Tirne Delay

Delay > J_Ll— > |:|

ZOH1.33 Scope?

FIGURE 4.3: Simulink example
FIGURE 4.4: Model with multiple ADCs

0.0%

05

=

amplitude
amplitude

-05

g 05 1 15 2 s s 7 15 2

time (s) time (s)

FIGURE 4.5: Delayed sine wave FIGURE 4.6: Time delay error

is not available at the exact time, it is interpolated between available values, giving
results that are not exact.

A second example of a problematic model is shown in figure 4.4. An ADC,
implemented as a zero-order-hold (ZOH), is assumed to have a fixed sample rate,
i.e. a ZOH holds the value of the input at the beginning of a fixed period for the rest
of the period (otherwise a sample-and-hold should be used, which has an explicit
input for triggering a possibly variable sample moment). The simulation time steps
are indeed synchronised with and determined by the sample rate for both fixed and
variable step sizes in Simulink. For a multi-rate system with more ADCs the time
steps match the sample times of all ADCs with a variable step. However, a fixed step
size results in a very small time step, matching the common denominator. Already
for more than two ADCs the time step becomes too small and generates an error
in Simulink.

In section 4.4 we will present a survey of mixed domain modelling tools in re-
lation to their ability to model time in the CT domain among others. We will find
that there is no such tool that can deal with time in an adequate manner. Therefore
and because of other shortcomings we propose a novel modelling and simulation
framework in chapter 5 that enables local control over the time, i.e. by locally apply-
ing time transformations or time steps the problems described here can be resolved
while retaining efficiency.

4.4 SURVEY OF EXISTING TOOLS

There are many mixed domain modelling tools. We will first give an overview of the
major players and then relate them and others to exact continuous time modelling,
multi-domain modelling support, support for mathematical definitions, model
transformation support, and parallelisation support.

4.4.1 Major tools

An extensive survey of languages and tools for hybrid systems can be found in [17].
Some of the better known tools are Simulink for CT and DT modelling and finite
state models, Ptolemy (II) [24] which supports many domains with a strong basis
on DF and aims to be a testbed for multi-domain modelling, SystemC-AMS [102]
as an extension of SystemC for system-level mixed signal modelling, and Model-
ica [32] which is an object-oriented declarative modelling language. We will dis-
cuss the major tools in more detail next.

MATLAB/Simulink Simulink [99] is a graphical environment for dynamic and
embedded systems, using block-diagrams for modelling and simulation for func-
tional analysis. It is often used together with MATLAB, an imperative language for
numerical computing. Simulink is the de facto standard for mixed CT/DT system
modelling [17]. It is, however, limited in its support for multiple domains, only
supporting DT as piecewise CT and Stateflow for finite state machines.

Simulink has support for hierarchical models and allows for code generation
to C or VHDL. It supports many different numerical solvers. Models can be inter-
preted or compiled for simulation, and simulation is supported by different plot-
ting scopes and showing the data type and sample time of the signals in the model.
There are many specialised toolboxes, for application domains such as signal pro-
cessing, providing implementations of common blocks.

Simulink is not very suitable for modelling digital hardware and software for
multi-processor architectures, where architecture definition, reconfiguration and
programming come into play. The reason for that is that the graphical interface
does not offer much flexibility when you (structurally) want to change your design.

In the context of this thesis, however, the important drawback of Simulink is
that it does not offer adequate support for the integration of the various notions of
time. This either causes inadequacies in the simulation results or large inefficien-
cies during simulation. Furthermore, Simulink does not support DF models.

Ptolemy The Ptolemy project [24] studies design, modelling and simulation of
concurrent, real-time, embedded systems. The project provides a framework for
system simulation using diagrams and focuses on experimenting with various do-
mains with the goal of researching their interaction. Models can be created using
Java, XML or with a graphical tool. Ptolemy [24] supports many domains, includ-
ing CT and DF and experimental DT support. The CT domain is defined as part
of HyVisual, the hybrid system visual modeller which is built on top of Ptolemy.

89

90

Ptolemy uses an actor model and tagged signals for integration. Actors are
concurrent computational entities that acts in response to messages. In the tagged
signal model [58], signals are a collection of events and an event is a pair of a time
and value. Ptolemy also has a notion of “super-dense time”; time is a real number
with an index for ordering events that have the same time such as with disconti-
nuities in a signal. Further, Ptolemy supports higher order components, but not
higher order signals.

Since Ptolemy, just as Simulink, uses a global solver, the problems with the
integration of time domains also are the same as with Simulink. Furthermore, both
Simulink and Ptolemy offer little support for model transformations, apart from
code generation.

SystemC-AMS SystemC is a set of C++ classes to provide discrete event simu-
lation aimed at system-level modelling. It is used as a HDL, but also aimed at
system-level modelling. However, systems are regarded from an implementation
viewpoint, while the other tools are more from a requirement and specification
viewpoint, i.e. SystemC aims at modelling at the architectural level in between
the function level and the implementation level [35]. SystemC-AMS extends Sys-
temC for mixed signal modelling [102], adding support for multi-domain signal
flow models.

SystemC-AMS supports three modelling formalisms: timed dataflow, linear
signal flow and electrical linear networks. Timed dataflow extends the un-timed
DF domain by assuming discrete time steps between tokens, a similar approach
to ours for including the DF domain. Linear signal flow is similar to models in
Simulink, i.e. an equation system is abstracted from the model and a numerical
solver is used for simulation (see section 4.3). Electrical linear networks use the
same approach, however, now connections between components are bi-directional,
i.e. it is an energy based model with effort and flow, such as voltage and current
or force and velocity. Such effort and flow based models are also known as bond-
graphs.

Again, since SystemC too uses a global solver, it has the same problems with
the integration of time domains as Simulink and Ptolemy.

Modelica Modelica [32] specifies a object-oriented, declarative, multi-domain
modelling language for modelling physical systems. Modelica has similar struc-
ture to our approach: components define relations and hierarchy, equations define
functionality. Again models are described by differential equations. Components
can be defined as uni-directional signal-flow blocks or bi-directional network com-
ponents. Modelica is designed to be domain-neutral, but a large set of domain
specific components are available in the standard library.

Modelica is only a modelling language definition; the simulation engine is un-
specified. There are several implementations of the language such as Dymola or
MapleSim. MapleSim [61] is built on top of the symbolic math engine of Maple.
The ODEs are first simplified by using Maple’s analytical algorithms before a nu-
merical solver is used, resulting in faster simulations.

In the Modelica language there is no module predefined for time delays, and to
the best of our knowledge all tools which implement Modelica use a global solver
again and thus encounter the same problems as before. In addition, Modelica is
not aiming at dataflow models.

Functional (reactive) programming The field of functional reactive program-
ming (FRP) [26, 46] uses higher-order functions, a standard feature of functional
languages, to model the CT and time-ordered discrete events for the SR (see sec-
tion 4.2.4) domain. FRP has made excellent progress in being applied to different
domains (for example animation [26], user interfaces [19] or robotics [75]) and pro-
viding formal semantics. The original work [26] focused on interactive animation
with switching behaviours (animation) and events (interaction) [26]. In later work
explicit behaviours and events are combined and only signal transformations are
used [46, 113] in order to avoid space and time leaks (i.e. a backlog of remaining
old data in the memory or large remaining computations that have not yet been
evaluated because of laziness). FRP does not identify and use different notions of
time; time is considered to be global and time is progressed globally by the FRP
framework, depending on e.g. the processing load.

In [101] higher-order model transformations for parallelisation are introduced
as strategies. Strategies complement an algorithm with a parallelisation approach.

ForSyDe [86, 87] is a system modelling and design refinement approach for
embedded systems. ForSyDe aims at raising the modelling abstraction level; a spec-
ification is iteratively refined to implementation with (high level) model transfor-
mations. The first version of ForSyDe supports SR and DE models [86] (signals
are tag-value pairs). Later versions also support automated hardware synthesis to
an HDL, but to allow this ForSyDe has a so-called “shallow” embedded domain
specific language (EDSL) variant for simulation and a “deep” EDSL variant for syn-
thesis of models. For the “deep” variant the models also include their structure in
the specifications, which an embedded compiler converts to an HDL. Inclusion of
other domains such as the CT and DT domain in ForSyDe is ongoing work.

Acumen [96] is a language for hybrid systems inspired by FRP. Executable
mathematics are used for modelling and simulation. The latest version supports
(directed) signal flow equations and uses, as standard, a global notion of time and
an ODE solver for simulations.

4.4.2 Exact continuous time domain modelling

All the researched tools and languages [17, 32, 102, 119] use ODE solvers for simu-
lating the CT domain; an equation system is set up and a global time step is applied
for numerical approximation, thereby implementing CT signals as a sequence of
values. Time transformations such as a time delay therefore buffer values and inter-
polate between available values introducing inaccuracies caused by the modelling
tool (section 4.3).

Tools represent signals as either a value at a global time step or a time-value pair.
Although Ptolemy for example has a notion of super-dense time, this is still a time

91

92

(plus index) and value pair. Ptolemy and SystemC-AMS do offer some support for
influencing the step size. For example, a block in a Ptolemy model can reject a step
size of the ODE solver until all blocks agree. SystemC-AMS supports module and
port time step propagation as a consistency check.

However, as we saw above, all of the above tools do not offer possibilities to
adequately integrate time domains.

4.4.3 Multi-domain modelling

There are many tools supporting the CT and DT domains, often implementing DT
signal as piece-wise CT signals [17] as discussed above. However, there are few
tools that support CT, DT and DF; we only know of Ptolemy and to some extent
SystemC-AMS (which uses timed dataflow). Together with ForSyDe, they are also
the only tools that do not use fixed domains [24], i.e. in these tools the supported
domains can be extended with additional domains by specifying their interaction
with the existing domains.

There are several SR languages popular in embedded system design, such as Es-
terel [10], Lustre [37], Lucid [18] and Signal [52], because they have clear semantics
and effective formal verification techniques [60]. However, none has support for
more domains than SR because of this.

There are also tools supporting DF. For example, LabVIEW [65] has a graphical
dataflow programming language, where signals are discetised streams of values. A
simulation context is used to add time and a solver to the model. We have found no
formalisation or implementation of dataflow that matches the semantics of signals
and components as used in CT and DT signal flow diagrams.

4.4.4 Mathematical definitions

As modelling tools, to some extent, all of the above tools provide mathematical def-
initions, i.e. models represent some mathematically specified functionality. How-
ever, for many the mathematical equations are not readily identifiable in the model.
For example, Simulink uses a graphical block diagram supported by the MAT-
LAB language. MATLAB is a language for numerical computing, i.e. numeri-
cally approximating mathematics, but uses an imperative language for specifying
this. Ptolemy relies on graphical models supported by Java, while SystemC relies
on C++, both imperative languages. Only Modelica and FRP use declarative lan-
guages, which are close to specifying equations as discussed in section 4.1.4.

4.4.5 Model transformation support

A model-based design approach uses a single model for the (formal and func-
tional) specification, verification, simulation and implementation of a design. This
model is refined with model transformations from specification to implementa-
tion. The Object Management Group (OMG) provides a specification of the kind
of models and diagrams used for model-based design as part of the SysML profile

of UML [70], and the abstraction levels as part of the model-driven-architecture
(MDA) specification. How model transformations are performed is still actively
researched. Current support for model transformations is typically limited to code-
generation [42, 71].

Simulink and SystemC-AMS have no support for modelling transformations.
Ptolemy only recently added initial support for model transformations using higher-
order components [30]. Projects researching automated system level modelling
with model transformations are Sesame [27] and Daedalus [69]. Their focus is
on automatically parallelising applications, with the restriction that they consist of
static affine nested loop programs (see below).

4.4.6 Automatic parallelisation

Part of the design process for embedded systems involves the partitioning of an
application to divide processing over multiple computational resources. Partition-
ing of the application can also be performed as a model transformation, but it is
more commonly known as automated parallelisation. The discussed tools are not
normally concerned with matching the functionality with an architecture, other
than the model transformations discussed above.

Simulink and Modelica have code-generation support, but this is a separate
process and not part of the model. Ptolemy has preliminary code generation with
template files with code blocks. On the other hand, SystemC-AMS models are
already supposed to be specified on the architectural level.

A common approach for programming multi-processor architectures is to start
with the digital processing part of the design as an application in C [39, 115]. An
implementation in C translates the mathematical equations or expressions of the
streaming application in a set of sequential statements. The statements update
the state in memory word-at-a-time, creating a bottleneck to a central memory
store [7]. A variable in an imperative language is mutable, i.e. it can be changed
at any time. This makes it difficult to partition the program as it is hard to derive
dependencies, i.e. what part of the program updates what memory at what time.
Therefore, a common restriction on programs that are auto-parallelisable, is that
they consist of static affine nested loop programs. Such programs consist of loops
which communicate via arrays and in which each loop only updates values in its
own scope at most once per execution [12], i.e. single assignment. From this re-
stricted program a graph is extracted to create a dataflow model.

There are a number of projects taking the route of auto-parallelisation of se-
quential code. They have in common that they all use a Kahn process network
(closely related to a dataflow model) to model the communication and synchroni-
sation of the partitioned application, and the applications are limited to static affine
nested loop programs. The Leiden Embedded Research Center (LERC) has a num-
ber of tools within the Daedalus project [69], trying to bridge the gap between
system-level models and implementation. The applications are provided in C or
MATLAB. A spin-oft company, Compaan Design performs the auto-parallelisation
by graph extraction and dependency analysis [94]. The Computer Systems Archi-

93

94

tecture group of the university of Amsterdam also uses a Kahn process network for
system level design for the Sesame project. The implementation is based on C++
and XML. The Apple-Core project [4] researches the design and use of many-core
architectures with support for light-weight threads and dataflow scheduling.

The problematic character of automated parallelisation is confirmed by the ex-
tensive research in this domain. Even for simple applications, it is already difficult
to derive a dataflow model from a C application, because of unnecessary data de-
pendencies and data dependent control [39].

4.5 UNIFIED MODELLING BASED ON TIME

We have found that current modelling tools do not adequately support multiple
domains, model transformations, mathematical definitions and exact continuous
time modelling in an integrated approach, yet these features are required for ef-
fective model-based design of embedded systems. Therefore, we propose a de-
sign flow and modelling and simulation framework that supports all these aspects,
called Un1T1. UN1T1 is a framework implemented in Haskell, a functional language,
but first and foremost it is a modelling and simulation approach supported by an
accompanying design flow.

In Un1T1, components are (higher-order) functions that transform signals. The
representation of signals is different in each supported domain. In the CT domain,
signals are implemented as functions of time, in the DT domain signals are imple-
mented as values, and in the DF domain signals are implemented as one or more
tokens, just as presented in section 4.2. As in all domains components are signal
transformations, UNITT uses unified composition operators for sequential, parallel
and feedback composition of components. For integration, a CT function is evalu-
ated at the sample time to determine the input value for the DT domain. A value
from the DT domain is held constant for the CT domain until the next value, re-
sulting in a piece-wise continuous signal. For DF integration, values from the DT
domain become input tokens and output tokens become values.

Uni1T1 is unique in being based on function composition instead of value-pass-
ing. Therefore, signal transformation in the CT domain are composed such that for
example time delays are included in the final function, independent from the time
used for simulation. This allows exact modelling of time transformations without
loss of efficiency in simulation.

A formal description and detailed discussion of UN1T1is presented in chapter 5.
In this section we will relate UNITI to the desired characteristics discussed above,
before discussing the accompanying design flow in section 4.6.

4.5.1 Model-based design

Following from the description above, UN1T1 supports the CT, DT and DF domains
(which are arguably the most important domains for embedded systems) in a sin-
gle model. We have found no formalisation or implementation of dataflow that

matches the semantics of signals and components as used in CT and DT signal
flow diagrams, thereby allowing unified composition of mixed domain models as
we provide with UNITL.

Un1T1 aims at raising the modelling abstraction level; a specification is itera-
tively refined to implementation with (higher-order) model transformations. It
applies model transformations based on the mathematical properties, such as asso-
ciativity, of the model components. This is similar to strategies as used in functional
languages [101]. UN1TI also uses model transformations for parallelisation. As the
application is specified mathematically, this has the advantage that no dependen-
cies are introduced other than intended in the specified algorithm. Therefore, it is
easier to partition and parallelise.

Hardware synthesis for the DT and DF domain in UNITI is also possible with
CAaSH [6], as Un1T1 components and the hardware components in CAaSH have
the same structure. However, they are not integrated yet.

Model transformations are parameterised, thereby providing the designer a
handle to try different alternatives, i.e. design space exploration. UN1T1 provides
a functional evaluation during design space exploration. Of course, it is also very
useful to evaluate other costs of the design such as the required computational and
communication resources. A mapping function can determine the optimal solu-
tion for a given architecture, or the optimal architecture for the given performance
figures according to some cost function. These costs can be included as meta-data
for the components in the model. For now this is a manual process, but it would
be a very useful extension to UNITI.

Opverall, UNITI provides a single unified framework supporting model-based
design, model transformations and design space exploration.

4.5.2 Exact continuous time domain modelling

In Un1T1 we differentiate between the representation of the model and the simula-
tion of the model. A common view seems to be that (quoted from [119]): “[The]
continuous evolution of variables is outside the domain of discourse of today’s com-
puters. Thus, while a denotational semantics for a hybrid systems language might
embrace continuous evolution of the variable values, an operational semantics can
only define values at discrete points in time” However, it is only necessary to define
values at discrete points in time for simulation, not for representing CT signals. Us-
ing higher-order functions, CT components are defined as signal transformations
on functions of time, which are composed into a final function before being eval-
uated. The evaluation of the model, which as mentioned before is a simulation of
the specified system, is then performed at discrete points in time.

Uni1T1 is the only tool that provides exact mixed-domain modelling using func-
tion composition. As higher-order functions are a standard feature of functional
languages, FRP also uses higher order functions. However, FRP does not identify
and use different notions of time nor does it support the CT, DT and DF domain
and their different notions of signals.

95

96

4.5.3 Mathematical definitions

A functional language is close to mathematics, providing a nice fit to represent
Uni1T1 in. By representing the models mathematically one provides a formal speci-
fication which can be checked for correctness. Using mathematics for implement-
ing functionality also means the inherent parallelism in the formalism is retained.
Additionally, it allows for correctness preserving transformations and offers a uni-
fied abstraction mechanism to integrate CT, DT and DF modelling. Simulation of
the design is done by straightforwardly evaluating the model. This saves us from
the need to develop a specific solver (i.e. equation system and solution algorithm)
that evaluates the model, as is standing practice in current tools. In fact, for a com-
ponent that needs to be numerically approximated, such as integration, a solution
algorithm is applied locally as part of the component. A different solution algo-
rithm and approximation step can be chosen independently for each component.

Uni1T1 relies on quite a few features of the functional language Haskell. A key
feature exploited is the use of higher-order functions, used for model interactions
and model transformations. More imporantly, we will show in section 5.1 that we
can directly implement the formalisms of the CT, DT and DF domains in Haskell.
As a consequence we can also use all of Haskell’s tooling, such as the compiler
and libraries, anda component in a UNITI model can use the full power of the
Haskell programming language. In addition, the purity of Haskell restricts the
programs so that they can be used safely on parallel or distributed systems such
as MPSoCs. Finally, the type system is used to define interfaces for components,
including all kinds of meta-data such as a visual representation of the component,
model requirements, and cost figures and constraints.

4.6 DESIGN FLOW

Using the domains defined in the previous sections, we will present a transforma-
tional model-based design flow to identify and guide typical steps encountered
when designing embedded systems. Iterative, verifiable steps transform a single
model into a division of functionality over the environment, the architecture (ana-
logue and digital hardware) and the application (software), as well as a partitioning
of the software over multiple cores. Although these steps described by themselves
are not new, it is important to match them with the presented domains and with
model transformations. A connection that is not trivial, as is evident from the lack
of support for this in current tools.

Figure 4.7 illustrates the flow. The rounded rectangles represent models and
the arrows represent transformations. A single multi-domain model includes the
environment, the architecture and the application.

The design flow uses a top-down divide-and-conquer approach. The initial
(formal) specification of a system is readily implemented and verified in the CT
domain. We will discuss the co-design and partitioning steps; the mapping and
code generation are beyond the scope of this thesis. Co-design can be seen as a
division over the domains, while partitioning can be seen as a division within a
domain (which we will limit to the DF domain in this thesis).

Specification
(math)

i

co-design

Single multi-domain model

'
|

Architecture

partitioning

Composition
(dataflow)

J

mapping
code generation
Y

Implementation
(platform)

FIGURE 4.7: Design flow for tiled architectures

4.6.1 Co-design

During the co-design process, functionality is divided over the different domains.
We distinguish a number of tasks:

o Decide what is needed from the environment for simulation and verification
of the designed system. The environment is modelled in the CT domain.

o Define the architecture and decide what is implemented in analogue hard-
ware (CT domain) and what in digital hardware (DT domain).

 Decide what to do in fixed hardware (ASIC, FPGA) and what to do in pro-
grammable hardware and software (DF domain), thereby refining the archi-
tecture and defining the application.

Co-design emphasises that the different perspectives in the domains are part of the
system design and need to be included.

4.6.1.1 Analogue/Digital co-design

Analogue design uses continuous time mathematical models. Going to the digital
domain involves sampling and quantisation by an ADC as well as choosing a rep-
resentation such as fixed or floating point, and determining the required accuracy.
Determining what to do in the analogue domain and what to do in the digital do-
main, i.e. where to place the ADC, involves taking into account implementation
aspects in both domains as well as ADC limitations. It is often beneficial to move
the ADC as far forward as possible, as in software-defined radio (SDR), because of
the flexibility the digital domain brings. But especially in embedded systems, it is
not possible to totally replace the analogue hardware by digital hardware. Consider
for example mobile phone designs, in which the frequencies are too high to be able
to implement everything in digital hardware.

97

98

4.6.1.2 Hardware/Software co-design

Processing systems often have a trade-off between what to do in hardware and what
in software. Hardware refers to specific functionality with limited flexibility, but
high efficiency (area, power, performance, cost), while software refers to process-
ing on some kind of processor which can be programmed and is therefore much
more flexible, but at the cost of efficiency. Hardware/software co-design refers to
designing the hardware and software together in co-operation, thereby defining an
architecture, and mapping functionality to hardware and software for this architec-
ture. This involves balancing a trade-off between flexibility and efficiency.

4.6.2 Partitioning

After functionality is assigned to hardware or software, the software is partitioned
over the programmable hardware (cores) in case of a multi-core architecture. The
performance and efficiency of the software is determined by computation and com-
munication costs. The computation is the actual work to be done, while the com-
munication ensures the data is available at the right place and time. Having the
data close to the computation, increases the efficiency by lowering the communi-
cation costs, exploiting so-called “locality of reference” As partitioning separates
the computation, it introduces extra communication and has an influence on the
performance.

We use a dataflow model where the processes contain the functionality and
the communication is made explicit via channels. Such a model thus represents
a partitioning of the software and transforming the dataflow graph changes the
partitioning. Execution and channel content can be monitored with UNITL.

4.6.3 Example

As an example of applying the design flow, we design a low-pass filter for a CT
source using the presented design flow. We choose to use a FIR filter in the DT
domain, because this allows us to easily change the filter coeflicients.

The specification consists of the requirements and a mathematical specification
of the functionality. The filter requirements are a 20dB attenuation low pass filter
with a 5MHz bandwidth. This results in a set of coefficients for the FIR filter, of
which the specifics are not relevant for this example. The FIR filter is mathemati-
cally defined as:

y[t]=(h*X)[t]=Z:1hn~x[t—n] (4.1)

where N defines the filter order, # is the set of coefficients, x denotes the input data
and y denotes the filter response.

As the FIR filter uses a DT signal (x []), an ADC is added before the filter:

A fam—

FIGURE 4.8: Filter block diagram

The environment generates the source signal. For the architecture, assume a
3-core MPSoC with an ADC. The application consists of the FIR filter. To fit the
application to the architecture, the application is partitioned and state is introduced
to limit communication, as we will discuss next.

A direct implementation of the filter of equation (4.1) on a single core would
require read operations on the input data x;_; ;- (in memory) for output
value y;. For the next output value y;,1, the values x; ;1 .. ;- n41 are read. Hence,
there is an overlap in read operations on x¢_; ;—» ;- n. By storing these values in a
local state, only the new value x; needs to be read. So, the introduction of state sig-
nificantly reduces the communication bandwidth due to locality of reference [23].

Consider the FIR filter from equation (4.1). When introducing state s; (a vector
of state values at time ¢), this equation can be rewritten as follows:

se[0] = x 1]
se[i] =se1[i—1], where i=1...N-1

y[t] = Zlhn -s¢ [n] (4.2)

where the recurrent relation between s; and s,_; (shown at the second line in equa-
tion (4.2)) can be implemented very efficiently by a shift register. Although the
state derivation seems to be trivial when done manually, an automated approach
is much harder. This requires an advanced analysis of dependencies that influence
the possibilities for partitioning, in order to obtain an efficient solution.

When state has been introduced, the communication bandwidth is reduced.
However, the performance may still be too low for the execution on a single pro-
cessor. Therefore, the operation is partitioned:

N
ylt]= Z_:lhn se[n]
g N
=Y hy-se[n]+ > hyese[n] (4.3)
n=1 n=5+1

Note that the rightmost sum shown in equation (4.3) requires the state value s, [g]

Using equation (4.2), we find s, [% + 1] =i [%], which only existed in the left-
most sum shown in equation (4.3). Hence, if both sums are mapped on different

99

100

FIGURE 4.9: Dataflow model for the FIR filter application

processors, this intermediate state value has to be communicated. Also note that
the equation parts are similar to the original FIR filter equation.

After partitioning the application, the resulting computations are assigned to
processes in a dataflow model, as shown in figure 4.9.

4.7 CONCLUSION

In this chapter we have motivated the need for a model-based design approach that
supports the CT, DT and DF domains. The CT domain is used for representing the
environment and analogue hardware of an embedded system. The DT domain is
used for the digital hardware, and the DF domain is used for representing software
that is intended for a multi-core SoC with a NoC. Such a model-based design ap-
proach should also support mathematical definitions and model transformations.
A model-based design process is often supported by formal specification, which
forms the initial model. Using mathematically defined models allows a designer to
directly define the equation of the specification in the model. Furthermore, math-
ematically defined models enable model transformations by exploiting the mathe-
matical properties in the definition.

Thereafter, we have presented a novel unified perspective on time, signals and
components in such models. This also includes the DF domain. In all domains,
components represent signal transformations, i.e. they transform input signals to
output signals. However, signals represent functions of time in the CT, values in
DT domain, and one or more tokens in DF domain. This representation is deliber-
ate because CT components are allowed to change the time reference, but DT and
DF component should not be able to do this. Integration of CT components and
DT components is achieved by sampling a CT signal or by holding a DT value for
sample period. Integration of DT components and DF components is achieved by
mapping samples to tokens and tokens to samples. For CT and DF components,
the DT domain is used as an intermediate. Additionally, the integration of the DF
domain defines time for tokens in a dataflow model, as the token arrival time is
then defined by the sample time of the DT signal. Therefore execution time for

dataflow processes also has meaning and determines the (production) time of out-
put tokens.

When simulating mixed-domain systems in current tools, time transforma-
tions, such as time delays, in the CT domain introduce artefacts. This occurs be-
cause such tools use a global solver which defines discrete global time steps to eval-
uate the system at. At each time step components pass values and components
such as time delays must therefore be implemented by buffering values and using
interpolation. This requires the designer to either accept less accurate simulations
or reduce the simulation time step to improve accuracy at the cost of efficiency in
simulation.

A survey of current modelling and simulation tools show that there are no tools
that support exact CT domain modelling, few tools that support DF modelling and
even fewer tools that also support mathematical definitions and model transforma-
tions. Therefore, in the next chapter UN1T1 is proposed. UNITI supports a unified
perspective of the CT, DT and DF domains, and also provides unified composition
of components in different domains. This allows exact CT modelling because time
transformation are composed into a final function before simulation. UNITI is im-
plemented in a functional language and therefore close to mathematics. As such,
models can be directly evaluated for simulation, and model transformation based
on the mathematical properties of components are supported.

Finally, these model transformations are used in a design flow for the design
of embedded systems. This design flow uses a co-design step for a division of the
model over the domains; a specification is transformed into a representation of
the environment, the architecture (hardware) and an application (software). Next,
a partitioning step performs a division within a domain, which we use for parti-
tioning the application in the DF domain. Mapping and code-generation give a
final implementation.

101

CHAPTER

UNr1T1

ABSTRACT - UNITI is a modelling and simulation framework for embedded
systems supported by an accompanying design flow. It supports model-based design,
model transformations, and mathematical definitions for multi-domain models in
a single model, as follows from the analysis of the requirements and shortcomings
of current tools in chapter 4. In this chapter we will present the formalism of UNITI.
UnrtTi provides a novel unified perspective on time, signals and systems in the CT,
DT and DF domains. As a consequence, it supports unified sequential, parallel
and feedback composition of multi-domain systems. Signals in the CT domain are
represented as functions of time, thereby enabling the accurate inclusion of time
transformations (e.g. time delays) in the formalism, while signals in the DT domain
are values and signals in the DF domain are lists of tokens. For integration, DF
components are embedded in DT components, and DT components are embedded
in CT components. Finally, model transformations based on the formalisms are
used for the design steps of the design flow. This involves defining a mixed-domain
model from the specification, and partitioning or parallelising the software.

A design flow based on model-based design and supported by model transforma-
tions was presented in chapter 4. It results from the need for a design approach
supporting modelling and simulation of multiple domains including the CT, DT
and DF domain, mathematical definitions of modelling components, and model
transformations, which current tools fail to deliver. This approach is called UN1TI,
emphasising that the unification is based on time.

In this chapter we will present the formalisation and the modelling and sim-
ulation framework of UN1T1. The unified formalisation includes the CT, the DT
and the DF domains such that components in these domains can all be specified
in the same formalism as a signal flow graph. The CT domain is well established

Parts of this chapter have been published in [KCR:8], [KCR:9] and [KCR:10].

104

in engineering for modelling the environment or the analogue hardware [93]. An
advantage of our approach is that there is no need to discretise the time of contin-
uous signals for simulation purposes, thereby allowing exact time transformation
such as (variable) time delays. The DT domain is used for representing the digital
hardware of the system. For the software, especially signal processing applications
and multi-core systems, DF models are very useful [56]. Processes in the dataflow
model represent computations and channels represent explicit communications.
As such, it can be used to partition an application. Furthermore, it offers methods
to analyse and guarantee consistent real-time performance [39, 115]. The integra-
tion of DF in the same model therefore is a major advantage.

We will also define composition operators (for sequential, parallel, and feed-
back composition) which are valid for all three domains, leading to a flexible mod-
elling of the system under design, as well as supporting model transformations and
design space exploration. These composition operators allow for a block diagram
like specification of the design.

UNrTr is mathematical in nature, because the specification of an embedded
system is usually given in (or at least supported by) a mathematical form (see sec-
tion 4.1.4). Additionally, it allows for correctness preserving transformations and
offers a unified abstraction mechanism to integrate CT, DT and DF modelling.
Uni1T1 is unique in being based on function composition instead of value-passing.
Since functional languages are close to mathematics (in the sense that computa-
tions are represented by functions instead of statements), we express the frame-
work and models in the functional language Haskell. Simulation of the design is
done by straightforwardly evaluating the model. UN1TI also includes a new execu-
tion model for the DF domain based on the representation of signals and compo-
nents in UNITL

Essential for model-based design is a single unified model and support for
model transformations. Because of the integrated approach of UNITI, we can ap-
ply model-based design using transformation steps, thereby guaranteeing the cor-
rectness of the design. Guidelines are presented for transformations between and
within domains.

This chapter is organised as follows. First, a formalisation of the domains is
presented in section 5.1, a formalisation that also provides a solution for modelling
time transformations exactly and integrating the DF domain. This is followed by
an explanation of composition and integration of the domains in a single model in
section 5.2 and section 5.3. Section 5.4 will elaborate on simulating models with the
Uni1T1 framework. Finally, we present the use of model transformations during the
co-design and partitioning step of the design flow of UNITIL, as well as guidelines
for enabling such transformations, in section 5.5.

5.1 FORMALISATION OF THE DOMAINS

In this section we propose a novel way to simulate CT/DT systems which is exact
while retaining efficiency. In the CT domain we consider signals as functions of

time such that the values of a signal can be exactly determined at every instant dur-
ing the simulation. By implementing CT signals as functions of time, time delays
or multi-rate systems can be implemented exactly without losing efficiency. In the
DT domain we consider signals as piecewise horizontal from the last sample of the
ADCs. Thus, our simulation technique coincides with the standard mathematical
modelling of such systems. Additionally, in our approach time is kept local, i.e. ev-
ery continuous component may have its own discretisation of time in time steps.
Thus, components may be numerically calculated at a fine time scale without caus-
ing inefficiencies in those parts of the system which do not need such a fine time
scale.

In order to deal with signals as functions of time, our approach uses higher order
functions to express transformations of signal functions. Hence, we choose for a
functional programming language (Haskell) to simulate a mixed-signal system.

In addition, the DF domain is presented in a way that is consistent with the
representation of signals and components in the CT and DT domain (see also sec-
tion 4.2). For this representation, DF signals represent token updates to channels,
and DF components represent processes together with its input channels and firing
rules. By generalising this notion of signals and systems we can integrate compo-
nents in the DF domain with components in the CT and DT domain. As a conse-
quence, we provide a novel unified perspective of time, signals, components and
systems in the CT, DT and DF domains.

There are several execution models for the DF domain (e.g. concurrent pro-
cesses, compilation of dataflow graphs, tagged token model) [57]. The most com-
mon is to implement dataflow processes as concurrent processes with static schedul-
ing and implement the firing rules as a sequence of “read”, “execute” and “write”
phases [56, 57, 64, 82, 115]. However, these execution models do not match with a
signals and components representation of dataflow, as they all use buffers or queues
representing channels, i.e. the channel contents, while signals represent channel
updates. We will present a new execution model for dataflow, following from rep-
resenting dataflow models as DF signals and components.

Integration of the CT domain, the DT domain and the DF domain in one de-
sign framework is a problem that is not satisfactorily solved by existing tools (see
section 4.4). In this section we also present an approach which supports the design
process on these aspects, filling in a gap that is left by current design tools (such
as [17, 24, 102]) which are able to solve this challenge only partially. We present
a unified formalisation of the CT, the DT and the DF domains such that compo-
nents in these domains can all be specified in the same formalism. There are few
tools that integrate the DF domain with the CT and DT domain. Furthermore,
these tools and the many tools that offer mixed CT and DT modelling (without
DF) have problems with time transformations.

In the context of this thesis, in which we limit ourselves to streaming applica-
tions running on tiled multi-core architectures, the CT and DT domains are mainly
relevant for the hardware side of an embedded system, and the DF domain deals
with the software side.

105

106

5.1.1 Continuous time

Consider the following system consisting of a sine source, a time delay and a scope:

/\-/_) At —)D

FIGURE 5.1: CT delayed sine wave block diagram

In the CT domain the physical environment of the system or the analogue hard-
ware is represented. In this domain, time is represented by the real numbers, and
a signal is represented by a function over all time. Thus, if f is a signal, then f(¢)
is the value of that signal at time ¢. This leads to the following type definitions:

Time =R
Siger = Time - R

Componentcr = Siger — Siger

where A — B denotes the class of all functions from A to B. Note Componentcr is
a “higher order type’, i.e. it has a function (of type Sigcr) as argument and delivers
another function (also of type Sigcr) as result, thus expressing that a component
transforms signals.

A component can have multiple inputs and outputs. Multiple inputs and out-
puts are denoted as tuples (nested ordered pairs). The type of a component with n
input signals and m output signals follows as:

Componentcr = Siger — Siger

The first component in figure 5.1 is a sine source and as such does not really
“transform” a signal. That is, it transforms a vacuous input:

source () =t~ a-sin(wt)

where a is the amplitude, w the frequency and ¢ is time. The notation ¢t ~ ..f..
denotes the function which maps ¢ to ..t...

The next component in figure 5.1 is a time delay. The delay can have any value
and can even be variable. Existing modelling tools have problems with a time de-
lay because the time of CT signals is discretised for simulation. Mathematically,
however, a time delay component is simply defined as (where § = At):

delays (f) =t~ f(t-90) (5.1)

where f is a signal, i.e. a function of time, and delay adjusts the time of f with 6.
Thus, to find the function value on time ¢ after a 0.1 time delay, one has to know the
function value at time ¢ —0.1. As the input signal of delay is a function of time, the
time is delayed before f is applied to it. Thus we can locally control or change the

time reference of a signal. Note that delays indeed is of type Componentcr. From
the perspective of a CT component the input signal as a whole over all time is trans-
formed, there is no discretisation of time needed for implementation purposes. In
combination with the fact that the continuity of time is immediately present in the
type definitions as well, this makes it possible to express the fact that a component
can locally control or change the time reference of a signal.

The final component in figure 5.1 is a scope sink. The scope plots the signal,
hence, as a transformation it may be rather meaningless. That is, the input signal
is transformed to a vacuous output, with a plot of the signal as a side-effect:

sink (f) =t ()

Now suppose a 4 Hz sine with amplitude 3 and a 0.1 time delay. The input signal
of the sink, that is plotted, is then:

delay,, (source ()) =delayo, (t — 3 sin (27n4t)) = t — 3 sin (274 (+ — 0.1))

The time delay is accurately included in the final function, independent from the
time used for simulation. In Simulink and other existing tools it is exactly at this
point that inaccuracies are introduced.

5.1.2 Discrete time

We extend the system with an ADC and a signal bias in the DT domain:

U | At IA/D +n []

¢ > < >
Continuous Time Discrete Time

FIGURE 5.2: Mixed CT/DT system block diagram

In the DT domain the digital hardware (such as a FIR filter) of a system is
represented, in which signals constitute the value of the signal at discrete moments
in time. When an ADC is used to sample a CT signal, these values are also called
samples.

This leads to the following type definitions:

SigDT =R

Componentpr = Sighr — Sighr

It is important to note that from the perspective of a component a signal now is
a single value (numerical; here we assume R), i.e. it is a value at a certain time ¢
as in the CT domain but we have no control over t. Thus, from the perspective
of the component, time is abstracted away. This representation is deliberate as a
DT component should not have control over time (also see section 4.2), as the

107

108

digital hardware it represents does not either (except for sample delays, which are
represented as state). Note that the type of components has the same structure as
in the CT domain.

A component produces output values dependent on the current input sample
and possibly on previous inputs. In order to express the influence of the history of
the processing, a component has an internal state which keeps track of the relevant
history. Looking at a component as a signal transforming (mathematical) function
this means that the state has to be modelled as an additional argument to (and
result of) that function. However, it is possible to hide the state, here only explained
briefly, by directly feeding back the output state leaving only the input signal to be
applied to the function. We will discuss this in more detail in section 5.4.3. Hence,
a component can still be seen as a signal transforming function.

Returning to figure 5.2, the ADC component transforms the signal f into a
discretised signal with time interval d. This is achieved by flooring the time of the
CT input to the latest sample time:

adeq (f) =t~ f([t/d]-d) (5-2)

Applying the resulting function to a (local) time ¢ gives the latest value that was
sampled before t. The output of the adc (which is still a CT function) is then
a piecewise horizontal-function. This is implemented efliciently by re-using the
results from the latest sample in between sample times.

The next component in figure 5.2 is a DT component and adds a constant n to
a signal x (as in a bias, or a level shifter):

add, (x)=n+x (5.3)

Note that x is a numerical value, in contrast to f (from the delays specification in
the CT) which is a function of time. Therefore, there is no time in the definition of
add. From the perspective of the DT component, the input value x is just a value
at some moment in time; a time-varying value, but that is outside the influence of
the component itself.

For a mixed domain model, components from both the CT and the DT domain
have to be connected. These components use different types of signals. The output
of the ADC gives the latest sample for time ¢ and is a function of time. The add,
component must therefore be changed so it accepts functions of time as input, in
order to connect them:

add, (f)=trn+f(t)

The notation ~ is called “lifting” from a function on values to a function on func-
tions. Lifting changes or embeds the DT component add, to a CT component
add,, in order to combine the component with the CT adc component. However,
as the lifting is performed on the original definition add,, it still has no access to
time t, i.e in the lifted version » is added to the value of input signal f at time ¢
regardless of t.

Now suppose a delay of 0.3 time units, a sample period of 0.3 time units and
an addition of 1. Then the result of (the interesting part of) the signal flow diagram
in figure 5.2 is:

add, (adcy; (delayy, (source ())))
=t 1+sin (2n|(t-0.2) /0.3]-0.3)

Note that the time delays are accurately included in the final function. Thus, the
final function combines CT components and DT components in a single expres-
sion.

5.1.3 Dataflow

In the DF domain the software of the system is represented. The DF domain pro-
vides a model for stream processing with explicit communication.

In this section we will represent dataflow models as a DF component with input
signals and output signals, i.e. the DF domain is represented in the same formalism
as the CT and DT domain. This enables the integration of DF models with CT and
DT models. Therefore, the environment, the hardware and the software of a system
can be represented and simulated in a single unified model.

5.1.3.1 Processes and channels

As explained in section 4.1.3, a dataflow model or dataflow process network is a
cluster of several independent processes that perform computations, and commu-
nication between these processes is made explicit via channels. A channel is an un-
bounded FIFO token container, where tokens are atomic data elements. Processes
consume and produce tokens by reading from and writing to channels.

The amount of tokens consumed and produced, the rates, can be variable. A
single-rate dataflow (SRDF) model always consumes and produces a single token, a
multi-rate dataflow (MRDF) model has a fixed token rate at each input and output.
In a cyclo-static dataflow (CSDF) model, the token rates cycle through a number
of phases with fixed token rates (possibly zero) at each phase. Variable-rate phased
dataflow (VPDF) models have a limited form of data-dependent token rates[115],
where the token rate is determined by a parameter from an input channel. Finally,
dynamic dataflow (DDF) model have fully data-dependent token rates.

5.1.3.2 Components and signals

Above, in the CT and DT domain, a component transforms signals, and signals
connect components. When applying that approach to the DF domain, a compo-
nent thus corresponds to a node in a dataflow graph, and a signal is the data that
a component sends (and which consists of a sequence of tokens). This data then
is received by another component which stores the tokens in its internal state. As
soon as it has enough tokens it will execute, immediately followed by sending the
produced tokens.

109

110

The above leads to the following type definitions, in which Token is an abstract
type to be defined for each application separately (the notation [Token] denotes a
list of Tokens):

Sigpr = [Token]

Componentpr = Sighr = Sigpr

Here too, the structure of a component is the same as before. Note that the list of
tokens does not represent all tokens as in a channel, but only the currently commu-
nicated tokens, similar to the current value in the DT domain.

Therefore, the definition is different from the standard implementation of data-
flow in which channels store current and previous (unconsumed) tokens and con-
nect processes, while we use signals for connections (current tokens) and store
(input) tokens in a component with the process. It might seem to the reader that
it is easier to represent processes as components and channels as signals. How-
ever, this representation does not match well with the semantics of components
and signals in the CT and DT domains. The reason is that signals do not have
state (memory and state is represented using feedback as will be explained in sec-
tion 5.2), but channels are token containers and as such do have state. Using signals
with state is not a satisfactory option, because as explained in section 5.1.2 using a
mathematical function requires state to be an explicit input and output, i.e. read-
ing a token from a channel involves returning the token and the new state of the
channel. Thus, a component reading from channels must also return the new state
of all these channels as output. Furthermore, the process writing to this channel
needs this updated state of the channel in order to output a once again updated
channel state including produced tokens. Clearly, this representation of signals is
more complex than just connecting two components.

A better representation of DF is to include the input channel(s) as state of the
component. Signals then represent updates, in the form of tokens, to the channels
(as channels are unbounded, new tokens can always be added to the channel). Com-
ponents also implement firing rules, which are directly verified against the number
of tokens available in the input channels. This matches well as firing conditions
only change with channel updates. Furthermore, the component contains the cur-
rent production and consumption rates and execution phase as state, needed for
determining the firing rules.

Note that according to this definition of DF components, a component trans-
forms a signal each time it receives an update, also in case it has not collected
enough tokens to fire (or in case a process has an execution time that has not yet
elapsed). To model that, it is possible that a component sends an empty signal con-
taining zero tokens, i.e. a component, applied to an input signal, that does not fire
results in an empty output signal. Although an empty signal does not indicate a
change to the input channels, it does indicate an execution step so that components
update the progressed time represented as execution steps. We will come back to
this in the section about integrating the domains (section 5.3), because then execu-
tion steps are linked against “real” time in the CT and DT domains. The other way

around, i.e. a signal contains more tokens than a component needs in order to fire,
is modelled by allowing a component to execute more than once (if possible), as
standard in dataflow models, and to combine the produced tokens (in order) in a
single result.

5.1.3.3 Definitions

Similar to the CT and DT domain, the user specifies the functionality of the com-
ponent and the connections between them. UN1TI takes care of managing channel
contents, firing rules and execution.

Consider a DF component that consumes three tokens with a fixed rate, where
the tokens are numbers, and calculates their average. The functionality of the pro-
cess is denoted as:

means ([x,y,z]) = [(x+ y +2) /3]

where the input signal of mean; is a list of three tokens [x, y, z], and the output
signal is a list containing the averaged result as a single token. Clearly, this process
can only execute when there are three values available and produces one value. It
is thus a MRDF process with a token rate of 3 for the input and 1 for the output.
Assume an execution time of the process of 1 execution step. Finally, a DF model
typically has initial tokens in the channels. Suppose, initially there are two tokens
(2 and 4) in the input channel.

The average component as a whole, i.e. its functionality together with its initial
state, is now formulated as:

average = Clmeans | S
where S = ((3,1,1),[],[2,4]) (5.4)

Herein, S is the initial state with the token rates and execution time as the first
elements of the tuple, the currently processed tokens as the second element of the
tuple (initially empty and explained further below), and the input channel contents
as the third element of the tuple.

The [operator and the {} operator are implemented by the UNIT1 framework.
The above is all that a designer needs to define when using the DF domain. The [
operator is required to add the management of channel contents and firing rules
to means, so as to embed the functionality defined in means in a DF component
average. The 1) operator is required to provide the initial state of the component.
These operators are discussed in more detail in the next section.

5.1.3.4 Definitions provided by Un1T1

The complete structure of a DF component is illustrated in figure 5.3.

The functionality of a dataflow process is denoted by P. The operator [extends
the functionality of P with firing rules and execution. The [operator takes care
that when the component is applied to a signal i, it will:

111

112

Component

|
|
N

FIGURE 5.3: DF component structure

« add the tokens from i to its internal state,

« then apply the function P as many times as possible (possibly zero times),
each time removing input tokens from the state,

« and finally packing the results in an output signal o.
The [operator returns a function on state. The {} operator applies this function

to the initial state S following it. The state (with type S) of a DF component is a
3-tuple:

S=(R,T.I)
The first element of the state is a data structure for the token rates (of type R):
R=(r],ry,t)

where r!" are the token rates for n input channels, " the token rates for m outputs,
and f the execution time, corresponding to (3,1,1) in the example above.

When a process fires, tokens are consumed from the input channels. However,
the output is typically not produced instantaneously, i.e. the execution time of a
process is also modelled. This requires that the produced outputs are remembered
until the execution time has passed. In addition, there can be multiple outstanding
outputs as a process can fire as long as there are enough input tokens. Therefore,
the second state element (of type T') is a list of “timers” for storing outputs as state
until their execution time has passed (as pairs of Time and Sigpp):

T =[(Time, Sighr)]

and is initially an empty list.
The final state element (of type Z) is the content of the input channels:

T =Sighp

which is initially [2,4] in the example.

The functionality of a DF process P of type P is a function from inputs to
outputs:

P=TI">0O"

Note that the input and output of P are of the same type as the inputs and outputs
of the DF component:

Componentpr = Sighp = Sigpr

However, for the component the signals are channel updates, while for the process
P they are the r; input tokens and r, output tokens of the process.

The [operator converts P to a function on input signals and state. So the type
of [is:

[:P — (S xSigpp — Sighr x S)

Herein, the resulting function has a current state (S of type S) and input channel
updates (i of type Sig},) as inputs, and returns the output channel updates (o) and
the updated state (S’) as outputs.

After applying the above function to an initial state and an input i, it returns
output 0 and the next state §’. The function is then already applied to next state S’
using so-called partial application while the next input will follow later. The result
is then an output 0 and a new function to use for the next input i. By repeating this
each time, the state is not visible from the outside but hidden in the next function
to use. This is performed by the {} operator:

1 : (S x Sighy — Sighr xS) xS > Componentpr

Thus, the f} operator applied to the result from the [operator applied to P, and
the initial state S result in a DF component Componentpg.

The state of a DF component contains all the information needed for execution.
At execution:

o+ new tokens (from the signal) are added to the input channels of the compo-
nent (with +),

« the component is recursively executed (exe) as long as firing conditions are
valid,

« and the timer structure T is checked if any execution times have passed re-
sulting in output tokens o by the function timer.

113

114

These tasks are defined by the [operator:

B (P)=(S,i)~ (0,5)
where
(R,T,1) =S
I'=T+i
(T',R,T") = exe (P,(T,R,I"))
(0, T") = timer (T")
§'=(R,T",1")

where " indicates an updated structure. The first definition in the “where” clause
unpacks the state S into its three elements. The next three definitions correspond
to the three steps presented above. The first step updates I by adding new tokens i
to it and returning the updated input channel contents as I'. The next two defini-
tions will be discussed in more detail below. The last definition packs the updated
elements of the state together in S'.

The exe function executes a process P if enabled by the firing rule. Therefore,
it uses the rate structure R to determine how many tokens are needed for firing.
The current input channel content I’ is checked to determine if enough tokens are
available. If a process can fire the output tokens are added to the timer structure
together with the execution time. The definition of exe is as follows:

exe (P, (T, R,T)) = {exe (P, (TR, I")) ,if fire
(T,R,1) , otherwise
where
fire = check (r!,1)
(ri,r,t) =R
(i,I") =read (r!',1)
T =T+ (t,P (i)
R =(r!, 1l t)

Herein, fire is a boolean that indicates if the process can fire. If not, T, R and I
are returned as is, i.e. nothing changes. Otherwise, the input and output token
rates and execution time are extracted from R. The input token rate r; is used to
read that many tokens from the input channels I. The process P is applied to the
resulting inputs i to compute the output tokens. The outputs are added to the timer
structure T together with execution time ¢. The updated state (T’, R’,I") is used
for the recursive definition of exe, so the exe is repeated until the firing rule is
false.

In the definition of exe, check determines if a process can fire by comparing
the input channel contents with the input token rate required for firing:

check (r,T) = {True Sif 1] > r,”
False ,otherwise
where |I| is the number of tokens in the channel.
Finally, the function timer updates the timer structure T by decreasing the
execution time of each time-value pair with one and returns all output tokens of
which the execution times have passed (in order):

([v],[]) : timer(T) ,if (1-1<0)

timer ((t,v): T) = {(H, [(t-1,v)]): timer(T) ,otherwise

Herein [] denotes an empty list, and : is the list constructor operator. Note that
this is a recursive function for which the output tokens whose execution time have
passed (v) are collected in a list as the first argument of the tuple, and for the rest
the execution time is decreased by 1 (¢ — 1, v).

5.1.3.5 Generalisation

There are several classes of dataflow models. The mean; example was a MRDF
process. In fact we have generalised the rate structure R to all dataflow classes
except DDF by noting that:

SRDF c MRDF c CSDF c VPDF
The most general rate structure, the one for VPDF', is a 5-tuple:
R= (p, £k, ql, rate;, rateo)

with the current execution phase p, a list of execution times per phase (¢), param-
eters used to compute the current rate (¢'), and two rate functions rate; and rate,
which compute the input and output depending on p and g'. For example, the
token rate at the input for phase p and parameter g’ is:

ri = rate; (p,ql)

Besides changing the rate structure, the function exe must also be changed
accordingly as follows. The updated rate structure is now defined as:

R' = +1) mod |t¥|, ¥, l,,ratei,rateo
p q

where |t¥| denotes the number of elements of ¥, and mod is the modulo operation.
Thus, each execution or firing, the phase is increased by one modulo the number
of phases.

for more about VPDF see [115]

115

116

We have defined functions for each of the different classes of dataflow to gener-
ate an R structure. SRDF, for example, only has an execution time; the token rates
are always 1 and it has no phases or rate parameters. These functions also initialise
T to an empty list and initialise I with initial tokens i”. The functions return a
state structure S and can therefore be used directly following the f} operator. The
generation functions are defined as:

st (t,i")
mr ((t,r],r0),i")
S((t r;quk’ mxk) n):
vp ((¢5q'srior,) ") =

05 10 o 17),[]547)
[t () ris_e g), [11")
t

l}’l

1

where sr creates a rate structure and state for SRDF, mr for MRDF, cs for CSDF
and vp for VPDF.

5.1.4 Representation in Haskell

The mathematical formulations of the CT, DT and DF domain can be straightfor-
wardly represented in a functional language. In particular the support for higher-
order functions to express signal transformations, and partial application (a func-
tion is already applied to part of the arguments, while the rest follows later), that
functional languages offer, are essential. Furthermore, side-effects are not allowed
in any of the domains, so we choose for the pure (side-effect-free) functional lan-
guage Haskell. Haskell also provides a type class feature to conveniently overload
algebraic and composition operators, so that the same operator can be used in all
domains. That means that the type of the signal determines the specific operator
implementation that is used.

We will first present the representation of the delay component as presented
for the CT domain, and the adc and add components as presented for the DT
domain. The delay, adc and add components are straightforward reformulations
of equations (5.1) to (5.3) as can be readily checked (\t -> correspondsto t ~ and
the standard function floor returns the greatest integer not greater than x):

delay delta f

adc d f
add n X

\t —> f (t—delta)
\t —> f (floor (t/d) * d)
n + x

Note that these functions have two arguments, one of which was given in the form
of a subscript in the mathematical formulation. In the Haskell formulation the first
is given when used as a component, while the second (f and x) represent the input
signals which follow when a component is composed with another component.

For implementing the DF domain, the df operator is the Haskell formulation
of the [operator and "~ " is the formulation of the f} operator. The DF component
average (equation (5.4)) is then implemented as:

average = df mean_3 AAA [2,4]

The definition of df is exactly the same as [, and """ as {}, i.e. all definitions are
immediately readable as Haskell code.

Of interest to the representation of the DF domain is the use of type classes by
the framework. Type classes provide a polymorphic interface, so that the imple-
mentation is generic with respect to the number of inputs and outputs used by a
DF process, i.e. one may overload the same operation symbol for different types
by making some type a an instance of a type class and defining the operations of
the type class for type a. All the provided definitions of the DF domain are poly-
morphic, except for using channels (+, check, read) and generating token-rate
data-structures (sr, mr, cs, vp), as these are directly dependent on the number of
inputs. The inputs of a dataflow process can have different types, therefore, they are
implemented as tuples because Haskell does not directly support heterogeneous
lists (lists are homogeneous). However, a tuple is a type and Haskell has strong
typing. Hence, an implementation must be provided for every combination of n-
tuple input and m-tuple output. We have implemented these functions for up to
four inputs and outputs (adding more is straightforward).

5.2 COMPOSITION

The standard mathematical interpretation of a signal flow diagrams is that the ar-
rows express signals and the components denote signal transformations. Further-
more, the diagram as a whole then is a composition of these transformations.

The CT, DT and DF domains presented in section 5.1 all have components that
transform input signals to output signals. This is intentional, so we can provide

generic rules for composition in all domains. The generic component structure is
defined as:

Component = Sig" — Sig"

Note that Sig” can be any combination of signals from the various domains and is
implemented as a nested tuple, e.g. (Sigcr, (Sigpr, Sigpr)).

Next, we will define operators for sequential, parallel and feedback composi-
tion. With these composition operators we can define arbitrary signal flow dia-
grams [93].

f Q _“’Sf) f g
[y Ly e 0
©
¢ [,] ve w

FIGURE 5.4: Sequential FIGURE 5.5: Parallel FIGURE 5.6: Feedback

117

118

5.2.1 Sequential

Sequential composition (illustrated in figure 5.4) combines components sequen-
tially and is defined as:

p>y=fry(e(f)) (5.5)

where ¢ and y are transformations, i.e. components, and [> is the operation
to compose transformations sequentially. That is, ¢ > v is the transformation
that takes a signal function f as an argument and determines its result by first
applying ¢ to f and then y to the resulting signal function. Thus, > returnsa
new component with the input signal f of ¢ and the output signal of y.

As an example, consider a sine source that is accelerating into the direction
of an (stationary) observer which causes a change in the observed frequency; the
Doppler effect. The resulting signal increases in frequency with time, which is
modelled with time scaling in the CT domain as:

/\-/_> .t —>:]

FIGURE 5.7: Accelerating source

and denoted as:
source > tscale, D> sink

The source and sink were defined in section 5.1 and are repeated here for clarity.
The definition for tscale, is:

source () =t~ sin (t)
tscale, (f) =t~ f(t-(a-t))
sink (f) =t ()

As before, these definitions can be straightforwardly represented in Haskell, and
evaluated for simulation. The simulation result is shown in figure 5.8 and as ex-
pected shows a frequency that increases over time.

It is sometimes useful to connect a single output of a component to multiple
inputs of another components, thereby duplicating the signal. Since the number of
inputs to connect to is known from the context of the sequential operator, we can
define a generic definition:

o D v=frvy(gg...), where g=9(f)

Herein, ¢ is applied to the input signal f, and the resulting output signal g is used
for as many input signals of v as needed.

)
W

o

wn

119
L [}
< <

g0 05 15 = 0 1 3/

g g

[+ [+

(=]

v
=
wi

time (s) - time (s)

FIGURE 5.8: Chirp signal FIGURE 5.9: Two added sources

5.2.2 Parallel
Likewise, parallel composition (figure 5.5) is defined as:

o ly=(0f£9)r (e (f)v(g) (5.6)

i.e. multiple inputs are represented as tuples and the composition connects ¢ to
the first and y to the second.

As an example, consider the following system:

AV,

N At

FIGURE 5.10: Simple beamformer block diagram

The system consists of two sources with different delays which are added, corre-
sponding to a simple beamformer. This system is denoted as:

(source; || (source; > delays)) > (+) D sink
The simulation results are shown in figure 5.9.
An alternative definition is:
system = (@1 || ¢2) D (+) > sink
where
@1 = source;

@2 = source; > delays

120

By using a where clause, we introduced hierarchy, i.e. in the definition of system
we define two blocks to be in parallel (¢; and ¢;) and in the where-clause we define
what these blocks are. So structural hierarchy is easily achieved by naming subsys-
tems. This is possible because a composition of components is itself a component.

It is sometimes useful to connect a duplicate of a single component to each of
the input signals in parallel. Since the number of inputs known from the context
of the parallel operator, we can define a generic definition:

Te=9¢1l ¢l ...

Herein, ||* creates as many duplicates of of ¢ (in parallel) as needed.

5.2.3 Feedback

In many systems there is a signal later in the system that is also used earlier in the
system, i.e. there is a feedback loop in the system. Figure 5.6 shows a component
¢ with two inputs f and h and two outputs g and h. The signal h forms the feed-
back loop, i.e. the second output of ¢ is also used as input. From the outside, the
resulting component only has an input signal f and an output signal g. However,
g is determined by applying ¢ to f and h, where A is also determined by applying
¢ on f and h resulting in a recursive dependence. Thus, at some point ¢ must be
able to determine h at the output using only f. Feedback composition (figure 5.6)
is then defined as:

O ¢=frg where (g,h)=9 (f. h) (5.7)

Herein (O connects the second output of ¢ to its second input, thereby returning
a component with input f and output g.
As an example we take an RC low-pass filter:

Vi R I C Vour

FIGURE 5.11: RC low-pass filter

Applying Kirchhoft’s current law we get:

Vin (t) - Vout (t) - CdVUut (t)
R dt

which we can rewrite to:

Vour (0= 2 [(Vi (8) = Vous (1)) i

and which corresponds to the following block diagram:

Vo O L | e [Yo

FIGURE 5.12: RC filter block diagram

This block diagram corresponds to a component with V;n as input signal and
V,out as output signal. Furthermore, it has three sub-components (-, / and -/rc)
which are sequentially connected and of which the result is fed back to the input.
Hence, it is defined in UNITTI as:

filtergc = O ((_) >/ (é))

5.2.4 Representation in Haskell

The composition operators >, || and O of equations (5.5) to (5.7) are written
in Haskell as >>>, | | and loop respectively, and are also in direct correspondence
to their mathematical definition:

phi >>> psi = \f —> psi (phi f)
phi || psi = \(f, g) —> (phi f, psi g)
loop phi = \f —> let (g, h) = phi (f, h) in g

These definitions are exactly the same as in mathematics, except that the arguments
£, g and h are not written between brackets as is standard in Haskell. Also in these
representations there is a recursive dependence on h in loop. Therefore, the ar-
guments (h in particular) of phi should not be evaluated before phi is applied
to them, otherwise there is an evaluation of h that will never terminate. Haskell
supports delaying the evaluation of an expression (such as the arguments of a func-
tion) until it is actually needed, called lazy evaluation, to allow the above definition
of loop.

The representations of [>* and ||*, written in Haskell as >>>* and | | *, are
a little more involved. As mentioned, multiple input signals are represented as tu-
ples in Haskell, as the input signals can have different types and lists must have a
homogeneous type in Haskell. However, each n-tuple requires a different imple-
mentation for each n. Therefore, we have to define type classes for >>>x and | | *
and provide instances for each n-tuple.

The type class CompSeq for >>>* is defined as:

class CompSeq b ¢ where
(>>>*) :: (a => b) —> (¢ —> d) —> (a —> d)

Here c represents an n-tuple of type b, where the number of elements of ¢ deter-
mines which instance to use. The types a and d are free, i.e. they are not restricted
by the type class. We must provide an instance for each n-tuple:

121

122

instance CompSeq (b) (b,b) where

phi >>>* psi = \f —> let g = phi f in psi (g,g)
instance CompSeq (b) (b,b,b) where

phi >>>* psi = \f —> let g = phi f in psi (g,g,g)

where the output signal g of component phi is used for each of the inputs of psi.
The actual number of inputs of psi determines which instance is used.
Similarly, we define a type class CompPar for | | *:

class CompPar a b ¢ d where
(11*) :: (a =>b) => (c —> d)
Here c represents an n-tuple of type a, and d represents an n-tuple of type b, and
the number of elements of ¢ and d determines which instance to use. Again, we
must provide an instance for each n-tuple:

i'x'l.stance CompPar a b (a,a) (b,b) where
(11*) psi = \(f,g) — (psi f, psi g)
instance CompPar a b (a,a,a) (b,b,b) where
(11*) psi = \(f,g,h) => (psi f, psi g, psi h)

where the number of input signals determines which instance is used and thus how
many copies of psi are created.

The requirement to specify an instance for each n-tuple is a Haskell restriction,
not of the mathematical definitions. This forms a practical issue, as UNTTT must
now provide many instances of essentially the same concept. Of course the defi-
nitions are regular and can be generated, however, a generic definition over any
size tuple would be preferred. Furthermore, it is sometimes necessary to explicitly
provide the types of signals or components, if the type interference in Haskell can
not derive the right types. Solutions to these problems are an ongoing discussion
in the Haskell community and fall outside the scope of this thesis. For the use in
this thesis, the provided definitions are sufficient.

The composition operators can be used to compose components of arbitrary
domains, e.g. a CT component can be composed with DT and DF components
etc. The composition operators are overloaded to support this, e.g. in case phi is
a CT component and psi is a DT component, psi is automatically converted to
or embedded in a CT component before being composed. The same holds for DF
components. This is explained in detail in section 5.3.

5.2.5 Algebra

Normal algebraic functions operate on values, but signal transformations operate
on signal functions. We can transform a normal function so that it operates on
signals, called lifting. Lifting makes it possible to use the same operators such as
, + and * as components in all domains.
Unary operations, such as , /~or +1, change the signal independent of the time:

—_—

V=t V()

Implementation is straightforward:

sqrt f = \t —> sqrt (f t)

Binary operations such as + and - are similar; we evaluate both inputs at time
t and then apply the operator:

frg=trmf(t)+g(1)

As mentioned before, Haskell has type classes. We can use that abstraction
mechanism to define e.g. arithmetic operators for numerical functions. The type
class Num has some standard arithmetic operations, so we can use them to compose
functionals:

instance Num (Time —> value) where
f + \t —> (f t) + (g t)

f \t > (f t) — (g t)
f \t > (f t) * (g t)

*

8
g
8

where value is some type of the values.
For the DF domain, a unary operator is applied to each token of signal:

—_—

Vi = (VEL V)

This can be seen as lifting an operation to operate on a vector, in our case the DF
signal. As a vector can be seen as a function from indexes to values, this is in
accordance with lifting an operation to operate on functions. The Haskell function
that performs this is called map:

hatsqrt xs = map sqrt xs

Binary operations similarly perform their operation pairwise on the elements
of the lists:

-~

+)7:<x1+}’1>xz+yz,xs+y3...)

In Haskell the function that performs this is called zipWith, which we use to
define the Num type class for lists of tokens:
instance Num ([token]) where
xs + ys = zipWith (+) xs ys

xs * ys = zipWith (*) xs ys
xs — ys = zipWith (=) xs ys

Note that these lifted operators only provide the functionality of a dataflow
process. In order to define a DF component, we have to extend this functionality
with firing rules and channel management using the 1 operator, and with an initial
state using the f} operator, e.g.:

pluspr =0 (+) 1 ([1.[])

123

124

5.2.6 Calculus

Until now we have only discussed algebraic composition (we did not define the
integral in the feedback example of section 5.2.3), for which the interesting sim-
ulation times are at the sample times of the ADC. Calculus is about change over
time. For example, the voltage over the capacitor in figure 5.11 is proportional to
the integration of the current through the capacitor until that time. We can solve
the integral (or a differential) symbolically or numerically. A problem with sym-
bolic integration is that for many functions an analytical solution does not exist.
Thus, simulation tools solve the general case with numerical integration. Haskell
has good possibilities to define analytical solutions to integral definitions whenever
possible, but we will use numerical integration for generality, as in the standard ap-
proach in simulation tools.
The component for integration is defined as:

[(n=t= [i

Numerical integration relies on a recurrence relation to approximate the inte-
gral. A simple numerical integration method is the Euler method?:

Yns1=yYn+h-f(ty), where h=t, —t,

So for multiple steps:

n-1
Vi =Y, + Zh - f(t,), where n=(t—1tg) /h, tiy=t;+h (5.8)
0

Here, h is the approximation time step that is used locally. For this definition, ¢
determines the number of steps n to compute from time f, using time step h. Fur-
thermore, ¢, is the time for step n to evaluate input signal f at.

Note that for each use of the integral component a different approximation step
can be chosen by the designer. The accuracy of the approximation depends on the
correspondence between the dynamics of the signal and the step size. As this can
differ at different places in the system, it is very useful to be able to define the time
resolution per integral (or differential). However, to the best of our knowledge, all
simulation tools use a single implicit time step to update the whole system, there-
fore potentially unnecessarily calculating simulation results for much of the system.
We conjecture that current tools use a global simulation time step, because it is dif-
ficult to determine the different time steps at each place in the system. However,
with our approach, by locally applying the time steps, the time used for evaluation
is only propagated back to the input signal, i.e. only the input signal and the com-
ponents that determine that input signal are evaluated using the local time step. So,
signals at the input are evaluated each approximation time step, but how often the
result at the output and the following blocks is evaluated is not influenced.

2Of course we can also use more sophisticated numerical algorithms such as Runge-Kutta, which
determines the time step based on the tolerance in accuracy of the result.

o
v
1

amplitude

o
&1
1

time (s)

FIGURE 5.14: Integration of a sine wave

An example is the following system:

AN — fof L]

FIGURE 5.13: Integrator

which is implemented as:
source > [.y D> sink

with h the approximation step size, ty the initial time, and y, the initial value of
the integral.

Following from equation (5.8), the input is calculated from time #; to ¢ in steps
of h. Each result is multiplied with h to get the approximate area and these results
are summed and added to the initial value. The integration of a sine wave with 10
steps per sample period is shown in figure 5.14, illustrating its use. Note that we
provide the sample time ¢ to the integral function, which then itself determines
how often to calculate the input signal f using the step size.

The integral definition includes a recurrent dependence on itself. This can also
be represented with a feedback composition operator (O):

[=(h) > O ((+) " (id || delay))

where id is the identity function and >* duplicates the input signal, which is
delayed. The delayed signal is fed back to one of the inputs of the addition, i.e. one
of the addition arguments is a delayed version of itself, which recurses back until
the initial value.

In these implementations, the integral is recalculated from time 0 to ¢ each sim-
ulation step. A more eflicient implementation that re-uses previously calculated
values needs state. State is discussed in section 5.4.3.

125

126

5.3 INTEGRATION OF THE DOMAINS

So far, we have discussed how to define components in the various domains and
how to compose components within each domain. Now we will discuss how to
compose mixed CT, DT and DF components for a multi-domain simulation. This
is achieved by embedding a DF component in a DT component and a DT compo-
nent in a CT component such that for simulation purposes the CT domain is the
unifying domain.

Below we first describe how the designer can explicitly embed the DT domain
in the CT domain, and the DF domain in the DT domain. Next we describe how
the Num class (section 5.2.5) automatically embeds these domains. Finally we give
an outline for a further automatisation of the embedding of the domains such that
it also works for arbitrary operations.

531 DT=CT

To embed a DT component into a CT component it must accept a function of time

instead of a single value (see section 5.1), i.e. we have to “lift” the DT component to

a CT component. In section 5.1.2 we introduced the notation add,, for the “lifted”

version of add,,. Here we will generalise that notation into a lifting operator ™.
For unary functions the operator ~ is defined as follows:

g(N)=t—g(f(1)

whereas for binary operations (say) it is defined as follows:

h(f.g)=tmh(f(1),g(1))

Clearly, this can be generalised immediately for n-ary functions. So, when a de-
signer has a DT component C in his design, he can simply replace it by C to get a
CT component. However, in the chosen application domain the typical operations
that are performed are numerical. Here, the Num class in fact already performs the
lifting operation automatically (see section 5.2.5).

Example DT signal transformations are not applied for all time, but only at the
sample times. The boundary between the CT and DT domain is the ADC, which
samples the CT domain to provide that value to the DT domain. Thus from a CT
perspective, the ADC floors the time to the latest sample time and holds that value
until the next sample time (with d the sample period) as we have seen before:

adcg (f) =t~ f([t/d]-d)

So the composition of a CT component with a DT component is a CT component,
but one that only evaluates and returns the result at the latest sample time for any
time in between.

<
w

127

amplitude
(=]
=
w
[3S]

<
w

_l N
time (s)

FIGURE 5.16: Delayed, sampled and biased

As an example, let us revisit the following mixed CT and DT domain system:

U | At |A/D +n — :]

< >4 >
Continuous Time Discrete Time

FIGURE 5.15: Mixed CT and DT domain system

which is defined as (with a delay of 0.15 time units, a sample period of 0.08 time
units and an addition with 0.25):

source D> delaygis D> adcoos > addyrs D sink

Note that in this example the necessary lifting is taken care of by the Num class. The
simulation results are shown in figure 5.16, showing a delayed, sampled and biased
sine wave as corresponding to the definition of the mixed-domain model.

In case a DT component is composed with a CT component there are two sit-
uations. If there is a CT component connected somewhere in front of that DT
component, that composition causes the DT component to be lifted to a CT com-
ponent. If there are only DT components in front of that component, the sample
time of those DT signals must be provided. This is achieved by rate; with d the
sample period, which is defined as:

(vo, (tosvo)) Hif(t<to+d)
t Vo =t~ k
ratea(um) (9) {(V, (to+d,v)) ,otherwise

where
v=¢()

Herein, rate uses state to remember the last sample value v, to output until the
time ¢ is larger than the saved sample time t,. If a next sample v is output, ¢ is
evaluated, where rate required ¢ to be a source component with a vacuous input.

128

Automatic lifting in general It falls outside the scope of this thesis to discuss
automatic embedding of the DT domain in the CT domain in detail, for that too
much knowledge of Haskell is needed (see [47, 62, 72, 73]). Besides, as mentioned
above, it is not necessary for the chosen application domain. Nevertheless, we im-
plemented this automatic embedding and give an outline of it below.

The implementation uses the Haskell type class abstraction mechanism. In par-
ticular, the type classes Functor and Applicative are used to express lifting, and
the type class Category is used to define composition operators such that lifting
is included.

For unary functions, the type Time -> value has to be turned into an in-
stance of the type class Functor (Time is a synonym for the type Double, value
stands for the relevant type of values). In that type class an operator fimap exists,
which has to be redefined for the instance of the functor that we need:

instance Functor (Time —-> value) where
fmap g f =\t —> g (f t)

Hence, for unary functions, ~ is represented by fmap.

For n-ary functions in general, the type Time -> value has to be turned into
instance of the type class Applicative. The definitions of the appropriate opera-
tors in the type class Applicative then are:

instance Applicative (Time —> o) where
<$> op = _ —> op

f <t>g =\t —> (ft) (gt)

We define ™ for unary, binary, ternary, . . . operations as follows:

<A> op f
<AA> op fo g
<AAA> op f g h
<AAAAS op f g h

<$> op <*> f

<$> op <> f <> g

<$> op <*> f <*> g <*> h

<$> op <*> f <*> g <*> h <> k

k

Note that the unary version <»> coincides with fmap above.

Embedding is only required for sequential composition of mixed domain com-
ponents. For parallel composition, different domains can coexist in parallel. For
feedback composition, there is typically a dependence between the input feedback
signal and the output feedback signal, causing the sequential composition within
the feedback loop to lift the feedback signal to the same domain. Otherwise, the
feedback composition does not really represent a loop and the definition will only
be valid if the types match.

In order to indicate how composition operators can automatically perform the
lifting operation, we restrict ourselves to composition for unary functions as an
example. Thus, let ¢ be a CT component, and ¥ a DT component. In order to
define ¢ > y in Haskell, we define a type class Lift with a composition operator
>>>:

class Lift a b ¢ where
(>>>) :: a —>b —> ¢

As mentioned before, all domains ultimately (for simulation purposes) have to be
embedded in the CT domain. Thus, we have to build instances of the Lift type

class for all combinations of the CT, DT and DF domain. We will present an ex-
ample of a composition of a CT component with a unary DT component. In this
example the type parameter a becomes ComponentCT, the type parameter b be-
comes ComponentDT, and ¢ becomes ComponentCT. This leads to the following
instance of the type class Lift:

instance Lift ComponentCT ComponentDT ComponentCT where
phi >>> psi = phi >>> (<A> psi)

Thus the composition operator from the CT to the DT domain first applies <r> to
the DT component, such that <»> psi now also is a CT domain component. For the
composition operator >>> on the right hand side the correct version of the >>> has
to be chosen. However, in order to give Haskell sufficient information such that it
can decide which instance to choose, functional dependencies on types have to be
used.

Above we described the basic idea how the type class Lift is used for defin-
ing a composition operator which integrates the various component types. As said,
presenting the details of the full implementation falls outside the scope of this the-
sis.

5.3.2 DF= DT

DF signals are a list of tokens, while DT signals are values. Thus, to embed a DF
component in a DT component, it must accept single values (samples) instead of
a list of tokens. This presents a problem, because in DF models data is abstracted
away into tokens, i.e. tokens are arbitrary data, while samples are values. We could
also abstract from data in the CT and DT domains; CT signals would then be func-
tions of time to tokens, but these have no sensible physical representation. So in-
stead we limit embedded DF models to values as tokens at the boundaries. This
is achieved by writing the value from the DT domain as a token into the input
channel of the DF component at the sample time. So a value from a DT signal
is converted to a DF signal consisting of a singleton list with that value as token,
i.e. from the perspective of the dataflow model, the DT domain produces single
tokens at a fixed rate. Vice-versa, a single token output DF signal is converted to a
DT value (possibly with a delayed sample time because of the execution time).

Automatic lifting in general We shortly mention the possibilities to let the com-
position operators do the packing-unpacking (<~>) automatically:

<~> psi = \x —> let [y] = psi[x] in y

By means of example we give the definition of >>> for DT to DF:

instance Lift ComponentDT ComponentDF ComponentDT where
phi >>> psi = phi >>> (<~>psi)

129

130

5.3.3 Unified model

Now components from all domains can be composed (by taking the DT domain as
an intermediate step in case of a DF component). An example of a mixed domain
system then follows as:

source D> delayy, > adcoos D> addgis D> average D> sink

where source, delay, , and adc o5 are CT components, add, 5 and sink are DT
components, average is a DF component, and their composition system is a CT
component. The simulation results are shown in figure 5.17. The average compo-
nent averages three samples, as defined in section 5.1.3, and therefore only outputs
a token every three input tokens or samples from the DT domain. In between no
output is provided, which is plotted as zero. The plot function connects those point
with lines, as shown.

5.3.4 Time

As said, the DF domain is untimed and only models the ordering of tokens. In the
DT domain samples are linked to a sample time. So from the perspective of time,
which is of primary importance in a simulation model, a DT model contains more
information than a DF model and it makes sense to embed a DF model in a DT
model. Because the DT values are linked to a sample time, the DF process now is
extended with time. Therefore, execution time of a DF process also has meaning;
the produced tokens after execution are considered values in the DT domain (with
a delayed sample time because of the execution time).

For a simulation, we are interested in the behaviour of the system, i.e. the re-
sults of the model over time. Therefore, simulation is a CT process, i.e. we evaluate
the model over time. As such, it makes sense to embed a DT model in a CT model
for simulation. This is still efficient, because time is floored to the latest sample
time (as with the ADC) and the sample value is re-used for every evaluation using
state.

5.3.5 Multi-rate

Multi-rate systems contain DT domain samples that are generated by ADCs operat-
ing at different rates. Such systems are typically problematic for simulation because
the data must be aligned with a global clock tick. Thus if we consider the samples
of the ADC over time as a list, then in multi-rate systems the positions in the lists
correspond with different times, which are difficult to merge. As we have separated
these notions of time, this is not a problem in our approach.

Consider a multi-rate mixed-signal model with an ADC with rate 0.3 and an
ADC with rate 0.35. A simulation at time 2, means that the ADCs should output
the latest samples, which are the samples from time 1.8 and 1.75 respectively. Thus
at the ADC we floor the simulation time to the last sample time and use that to

)
W
o
W
1

L L
< <
E /\/\ /\/ E
8.0 [V 1 15 2 &0 05 1 15 2
g g
[+ [+
0.5 0.5
l . -1- .
time (s) time (s)

FIGURE 5.17: Averaged sine wave over three FIGURE 5.18: Addition of two DT ramp sig-
samples nals with different sample rates

evaluate the signal from the CT domain. This system is defined as follows:

(rampo, > adcos || rampos D> adcoss) D> (+) D sink

ramp,()=t—r-t

The input signals of the ADCs are linearly increasing signals with a slope of 0.2 and
0.3 respectively. The different slopes of the input signals allow us to differentiate
the two ADC signals more easily. The simulation result is shown in figure 5.18. The
sample times of the two ADC:s are clearly visible in the figure, including the latest
samples at time 1.8 and 1.75. Furthermore, there is no common clock between
the signals, making such a multi-rate system difficult to align with a global clock,
especially if there are even more DT signals with a different rate.

Note that simulation steps could be larger than ADC sample time steps, so
DT components with state should be applied with all the samples since the latest
state. This is implemented by tracking the latest sample time and the local sample
rate in the DT domain combinators. Also, blocks that combine data with different
rates should take care of generating an appropriate rate at the output. This is only
a designer issue, however, because the framework supports mixed rate signals as
can be seen from the simulation results above.

5.4 SIMULATION

Simulation of a model consists of evaluating the model and visualising results.
Defining the mathematical definitions of the model in Haskell provides the advan-
tage that the model can be “executed” for simulation. Additionally it is useful to
show a block diagram or dataflow graph of the systems and the state of components.
We will discuss both evaluation and visualisation.

A major difference between our approach and other mixed-signal modelling
tools (see section 4.4) is the way the model is simulated. Our approach is based

131

132

on function composition, while other tools are based on value-passing between
components. Such tools do not allow exact time transformations such as time de-
lays (section 4.3). Furthermore, solvers are used for simulation. Simulation is per-
formed with a global time step, set by the solver, and the whole model is evaluated
at this set time. Since our approach uses functions of time instead of values, a
component has local control over the time step, and this time step is automatically
propagated backwards in the model as we will show.

5.4.1 Evaluation

As models are a composition of functions, simulation is simply a matter of evaluat-
ing the composed function or model. Since simulation is evaluation over time, the
top level component needs to be a CT component. The output of the top compo-
nent is a function of time to a vacuous result, of which the time is used as a time
step for updating the visualisations, i.e. the model is updated until that time. In
addition, the top component has a vacuous input.

The visualisation update or simulation time step can be larger than the time
step used locally for e.g. sampling or an integral approximation. In that case, the
ADC or integral component are evaluated a few times with their local time step
until they have reached the simulation time. The output signal of a component is
applied to a time. This component, for example a plot component, then uses its
local time step to evaluate its input signal. The time thus propagates backwards
through the components. Only when necessary, for example for numerical approx-
imation, are the input signals evaluated with smaller time steps, and only at the
input of the component.

Asan example, consider the evaluation of the model from section 5.3.1 repeated
here:

source D> delaygis > adcoos > addoys D sink

Assume a sine source, i.e. source () = t — sin(t). The input signal of sink which
is used for visualisation is then:

Glddo_zs (ad60,03 (delay0_15 (t [=d sm(t))))
=t 0.25 +sin (| (£ - 0.15) /0.08] * 0.08)

As explained before, the important aspect from this example is that ¢ is unaltered
by add, floored by adc and shifted by delay before sin is applied to it. In case of
an integration component often a numerical approximation is used with a step size
much smaller than the simulation step size. For such an integration component we
can locally apply the input signal to a time with the smaller step size until we have
calculated the result for the simulation time. So the component has local control
over the time granularity.

In summary, the overall model determines the step size for simulation, while
the local time steps are used for the plotting resolution, approximation accuracy
or sampling.

5.4.2 Visualisation

Visualisation of signals, components and models is actually a side-effect of the
model. Hence, above we have left it out of the definitions. For example, a scope
sink visualises its input signal but does not generate an output signal, i.e. it has
a vacuous result. It is also possible to visualise a block diagram of the system or
display the internal state of components. During simulation, the visualisation is
updated each time the model is evaluated by producing a list of “plot commands”.
Since side-effects are not part of a function result in a computational sense, this
can not be done directly in Haskell. Hence, they have to be an explicit output of
the function. In this section we will explain how to deal with side-effects in Un1Tr,
in this case for visualisation but we use the same approach for state in the next
section.

Visualisation updates are implemented as an additional output vs (of type [V])
of a component, which we call views. A view is a list of commands to the graphical
environment, such as “draw a line in figure 1 from the last point to (1,1)”. Thus, the
type definition of the component is:

Component = Sig" — (Sig",[V])

There are also commands for plotting a block of a block diagram or a process in
dataflow graphs.
An example of a component is then:

add,(x) = (n+x, [rectangle(“+” # show(n)])

Herein, the component for addition again has #n + x as output as in equation (5.3),
but also a command to draw a rectangle with a plus symbol and a character repre-
sentation of n using show(n).

However, now components have two results, of which only the first is relevant
to connected components. Therefore, the composition operators are redefined to
only provide the first output to following components. The second output consists
of the views, aggregated into a single list. The resulting definitions are:

o > y=fr(h, vs#ws),
where (g,5) =9 (), (hows) =y (g)
o Il y=>f,8)~((fg), vs#ws),
where (f',vs) = ¢ (f), (&' ws) =y (g)
O ¢=fr(gvs),
where ((g,h),vs) =9 (f,h)

Each component can have a view. A plot sink is typically used for visualising
signals as in figures 5.8 and 5.16. Other components can also present a visualisa-
tion, such as an illustration of its functionality, besides performing a signal trans-
formation, although positioning of graphical elements is still a manual process. For

example, figure 5.19 shows a block diagram of mixed CT and DT components (a
beamforming system), and figure 5.20 shows a DF graph.

133

134

Receiver ADC Beamformer e sink

source |-—— Transmitte é channel

RF FrontEnd Frocessing

System

FIGURE 5.19: Beamforming system block diagram

$.30706212]

0,30706212]

0.5994974]

FIGURE 5.20: Dataflow graph

5.4.3 Memory and state

The use of memory or state has been mentioned several times. DF components
have state for remembering the input channel contents. An example of a DT com-
ponent with state is a FIR filter. A FIR filter uses a history of recent inputs for
calculating the current output. An example of a CT component with memory is
an integration operation.

Essentially, memory or state is not necessary for correct simulation results. Pre-
vious inputs (in case of DT) or an approximation over time (in case of CT) can sim-
ply be recalculated every time they are needed. However, simulation would quickly
become very inefficient because of these redundant calculations. If we restrict ¢ to
be totally ordered, we can re-use previously calculated results. So for reasons of
efficiency, previously calculated results are remembered.

We will first present how state is used and then we will present how the state is
hidden for the final component.

5.4.3.1 Using state

The functionality of a component with state is defined with a function that has an
extra input and an extra output for the state. The state for the integral, for example,

is the last time o and value y, it calculated (using the integral definition from
section 5.2.6):

/. oy = G (6)
with

n-1
y=yo+ Y h-f(t;), where n=(t—ty)/h, ti=t;+h
i=0
Note that (¢, y) at the output is the next state.
When the integral is used as a component, we have to explicitly manage the
state, as can be seen from the following definition:

systems(f) =t~ ((5), v)
where

((g,s"), v) = (source > inty; > adcy > sink") () ()

sink’ (f) =t~ (((),s"), plot(x)) where (x,s") = f(t)

where g is the output signal, s’ the updated state and v the aggregated views. Here,
adc does not have to be changed, because of the extra state input from int, as adc
only changes the time the integral is evaluated at; the result of the integral at that
time is just some structure to pass on, with or without state. However, sink does
something with the resulting values, namely plot them. Therefore, sink extracts
the output value x and the state from the integral s’, where x is used for the plot
and s’ is passed on to the output and back to system.

The difference in performance between a simulation with state and without
state is quite substantial, especially for multiple integrations in sequence. For exam-
ple, simulating the system presented above with 150 simulation time steps, and with
about 10 integration steps per simulation time step, takes 2.833 s without state and
0.119 s with state on a 2 GHz Core 2 Duo system (a 24x speed-up). For two integra-
tion components in sequence, simulations without state almost become unmanage-
able taking 1863.201s (+30 minutes) against 0.718 s with state (a 2600x speedup).

An example with state in the DT domain is a FIR filter. A FIR filter calculates
the convolution of the impulse response of a filter (fl) with the input (x):

y[t]=(h*%)[t] = Z_;:hn-x[t—n]

where N defines the filter order, / is the set of coefficients, X denotes the input data
and y denotes the filter response. As can be seen it uses N — 1 previous inputs. The
FIR filter implementation thus has the previous N — 1 inputs as state s:

firy; (x)=(h+%, %)
where

X = tail (5) + [x]

135

1 11
0.5 0.5
136
L L
st st
=1 =1
£ _] £
a0 a0 5 1 1 ‘e
=) £
« s+
0.5 0.5
-1 h . -1 h .
time (s) time (s)
FIGURE 5.21: Two sources simulation FIGURE 5.22: Filtered sources simulation

The function fir computes the convolution between the coefficients h and the in-
puts X, where x is determined by dropping the oldest input of the state s (the head
of the list) using tail, and adding a new input x to the end of the list. The state s of
fir is the reversed list of the previous inputs, and the next state is the updated list
of inputs x. The dot product (-) is denoted as:

N N
heX=>"h,-x,
n=1

The FIR filter is applied to an input signal consisting of the sum of two sinu-
soidal signals, one of which has a 15 times higher frequency, as shown in figure 5.21.
We filter this signal with a 8-taps low-pass FIR filter with filter coefficients & as fol-
lows:

h= [0.069,0.099, 0.140, 0.165, 0.165, 0.140, 0.099, 0.069 |
s0=1[0,0,0,0,0,0,0,0]

system,(t) = (s, y)
where

(x,8) = ((srer || srez) & (+) > adeq > firns) () (1)
y = sink(x)

where the initial state s consists of all zeros. As the FIR filter is in the DT domain,
the output signal of fir is a value and a new state. Now, we can directly extract the
state s’ (i.e. the state does not have to pass through the sink), and just apply sink
to the value x.

The plot of the resulting values after evaluation is shown in figure 5.22. As can
be seen, the source with the higher frequency is strongly attenuated.

In this example, the representation using composition operators and corre-
sponding to a block diagram representation is split in two parts to extract the state.

The reason is that the state of the FIR filter must be bound to a name, so the system
function can return it.

Clearly, there is a lot of additional effort managing the state that is not related to
designing the system. Because the state depends on the time, the CT components
have to manage the state explicitly as presented. For the DT components we can
use special composition operators to pass the state over the component. Yet, the
DT component itself can have state, requiring yet more operators to combine the
state again.

Furthermore, state hierarchically moves up all the way to the top level com-
ponent, as can be seen for system. For the top level component, the state of all
sub-components is combined in a single state. This state has to be packed in and
out, at each level, and each time a function with state is used. Therefore, state is
globally managed, while it is a local property of a component. What we would like
is to provide an initial state to the component and keep it local, i.e the state should
not be visible when composing components. This can be achieved by making use
of continuations to hide the state, as discussed next.

5.4.3.2 Hiding state

There are several options for implementing state hiding. We choose to use con-
tinuations, because it matches well with our representation for components and
composition. A continuation represents a function, or in our case a component,
that is to be used for the next input, i.e. it represents a function to continue the
computation for the next input. Using continuations, the composition operators
can hide all the plumbing, for supporting state, from the user.

To apply this, a component is a function from an input to an output and a new
version of itself with updated state, the continuation:

Component = Sig" — (Sig", Component) (5.9)

This is similar to the implementation of views in section 5.4.2; UNITI combines
both views and continuations for a component.

As discussed above, the functionality of a component is defined using a func-
tion with an explicit input and output for state:

f:SxI—>(’)><S
f (s,i) =(0,5")

This function is applied to an initial state s, and an input and returns an output
and a new state s’. Thus, the new state is already available before the next input. If
f is partially applied to s’, we get a new function f”:

(0,5) = fsn1)
£ =1 ()

where f’ is the continuation, i.e. the function to use for the next input.

137

138

This principle is recursively applied for each new input using the {} operator,
which is defined as:

fhs=im(of1s)
where (o0,s") = f(s,)

When a component is defined the initial state is provided (f f so), after that, each
input results in an output o and a continuation (f {} s’), with s’ the next state. At
the outside of f { so the state is not visible.

Of course, now we have to manage the continuations instead of the state. How-
ever, in contrast to the state, the continuations do compose. This is performed au-
tomatically by the composition operators. Thus, components with state compose
just as components without state using these operators. All that remains are defini-
tions for the composition operators which are similar to the definitions provided
for composing views:

o >y=fr(h¢ >y),
where (g, ¢")=¢ (f), (hv')=v(g)
ol yv=>~(f8) ¢ I ¥v),
where (f',¢") =9 (f), (&) =v(g)
Og¢=fr(g O9¢),
where ((g,h),9") =9 (f.h)

Herein, component ¢ is applied to input f, resulting in an output g and a con-
tinuation ¢’. For v, it is applied to g resulting in h and a continuation y’. The
result is a component with input f resulting in output / and a continuation: the
sequential composition of the continuations of the sub-components.

The f} combinator was already presented for the DF domain in section 5.1.3. It
can also be used directly for the definition of the FIR filter above, i.e.:

firpr = fir, i so

In both the DT and DF domain, a new input value or new input tokens change the
state of the components. Multiple components with state can be composed using
the composition operators. Components without state need to be represented in
the same form as equation (5.9) in order to compose with component with state.
This is easily achieved using:

t(f)=im (f(), 1 ()

where the continuation is just the same function f again.

By embedding a DF component into a DT component, components with state
from both domains can also be composed. This is achieved using <~> from sec-
tion 5.3.2, straightforwardly adapted for phi, and also returning a continuation:

<~> psi = \x —> let ([y], psi’) = psi[x] in (y, psi’)

State in the CT domain is more difficult. State represents a result that is re-
membered over time. For the DT and DF domain, the next input represents a step
in time, and the state changes because of the new inputs. In the CT domain, the
inputs represent functions of time. Hence, a new input to a component does not
represent a step in time in the CT domain. In fact, in the CT domain functions are
composed only once, resulting in a function of time which is then evaluated over
time.

However, for an integral as in the example above, we compute the input signal
from t, to t in steps of h. Efficiency would be very much improved if the last
computed result from the integration can be re-used. This is achieved by using a
signal with state in the CT domain.

SigCT =Time — (R, SlgCT)

where the second output is a continuation containing the updated state for the
components. The integral is then defined as:

fh,m,yo)(f) =t (y, fhm ()

where the second output is now the [function again, but with updated state, and
with an updated input signal f’. These are now computed as:

sumy (to,ty...ty) = (h-x)+sumyp (t;...t,) where (x,f") = f(to)

(o f') = yo +sump(to, tr.. . t)
where n=(t~ty) /h, tii=t;+h

Herein, sum is computed recursively, and each step f(¢) is extracted into value x
and continuation f’, where x is added to the computation and f’ is used for the
next step. The final result is the value of integration up to t and the continuation
f" updated up to t.

Each CT component now needs to be adapted to a signal that provides a value
when applied to a time and a new signal to use next time. Therefore, the lifting
operator is changed:

g(f) =t (g(x), g(f)) where (x,f") = f(t)

Unfortunately, such a signal representation does not compose when using feed-
back composition in the CT domain. We will discuss this problem next.

5.4.3.3 Feedback with state in the CT domain

For a feedback loop in the CT domain, the feedback signal typically steps back in
time to some start condition, i.e. an integral from ¢,. If it does not step back in time
somewhere in the loop there is an infinite recursion or algebraic loop that will not
terminate. However, this recursion back in time causes all results from ¢, to t to

139

140

be recalculated each time we evaluate the output signal. In the DT and DF domain
the feedback loop also steps back in time, however, now the state can be used to
update the start condition to the last computed value.

Though modelling the environment of beamforming applications does not in-
clude feedback, from a perspective of generalising UniTi, it would be beneficial to
be able to support feedback in the CT domain. Our experiments so far did not yield
a solution. It is not possible to add the state to a CT component, as this component
is applied to the input signal only once, to compute the final output signal. There-
fore, we have added state to the CT signal, as presented above. Each evaluation,
the signals update their state with the latest value of the signal, such that it does
not have to be recalculated when used in a feedback loop. Unfortunately, such a
signal can not be used for a feedback composition. When such a signal is used for
afeedback loop, the signal / used at the feedback input should be updated with the
latest value at the feedback output h’ of the component. However, at that point we
do not have access to the continuation of & anymore, as h was needed to compute
h'. Therefore h still contains the old value and will recursively do so back to the
start condition again. As such, it remains an open problem.

In Haskell there are several options to explore for possible solutions. For exam-
ple, a sort of hash table can be used to store already computed values, called mem-
oisation [25]. However, it then must be decided when such values can be thrown
away. Exploring these directions to solve the problem with feedback is left as future
work.

We do note that this is a matter of efliciency and not correctness, although it is
a serious efficiency issue. Furthermore, it is possible to use a DT or DF feedback
loop to replace the CT one as a workaround.

5.5 MODEL TRANSFORMATIONS

In chapter 4 we have presented a design flow for dividing functionality over the
domains and within a domain. UN1T1 allows for a single model during the design
process. Because of the integrated approach presented, we can apply model-based
design using transformation steps. Furthermore, the transformations preserve cor-
rectness of the design. Nevertheless there is very limited support for model trans-
formations in existing tools (see section 4.4). We will discuss model transforma-
tions for the co-design and partitioning steps.

5.5.1 Co-design

Un1Ti supports a number of features to assist the co-design step of he design flow.
The basic algebraic mathematical operators such as + and - are overloaded so the
same operator can be used for all domains using the type class feature of Haskell.
That means that the type of the signal determines the specific operator implemen-
tation that is used and that the semantics of the operator in each domain are the
same. Therefore, a mixed CT and DT model is transformed from a CT model by
only adding an ADC.

For example, a domain independent definition of an addition of 1 (bias) fol-
lowed by a multiplication with 0.12 (gain) is:

(+1) > (%0.12)

where the input signal determines whether functions of time, values, or tokens
are added and multiplied. However, without changing the definitions and by only
adding an ADC, the addition is in the CT domain while the multiplication is in the
DT domain:

(+#1) > adcoy > (%0.12)

Of course, the placement of the ADC and in general the division over the do-
mains is a manual operation by the designer, as the relevant properties for assessing
the trade-off, such as cost in terms of money or energy, are not part of the model.
That is not to say they could not be; further research into this direction would be
interesting.

5.5.2 Partitioning

During the partitioning step in UNITI, an application is parallelised using model
transformations. However, parallelising an application is not straightforward, as
the dependencies between computations must be derived. Here, we present guide-
lines on specifying applications so they can be parallelised more easily. This in-
volves identifying parallelism (in an application), and defining an application such
that the parallelism can be exploited by model transformations in UNI1TI. Speci-
tying applications as such is performed by using the mathematical (model) defi-
nitions supported by UNITI. Then we will present how such applications can be
partitioned, with an example of a distribution model transformation.

We identify two kinds of parallelism: data parallelism and control parallelism.
In the first kind of parallelism the data is split. Examples are bit-level and data-level
parallelism. In the second kind the control, i.e. the operations on the data, is split.
Examples are instruction, task and pipeline parallelism.

5.5.2.1 Control parallelism

Control parallelism occurs when some operations or functions are executed in se-
quence. A section can already continue with the next data, while later sections are
still operating in parallel on previous data. To keep execution functionally correct,
the sections may not influence each other besides the explicit input and outputs,
i.e. the function must be side-effect-free with respect to the calculation.

These restrictions are captured by the DF model. Passing arguments to math-
ematical functions is similar to communicating values between processes. In the
DF domain, data in channels must remain ordered, making sure the operations
are performed in sequence. Back-pressure (a process is stalled if the tokens are not
consumed from the output buffer fast enough by the next process, see section 4.1.3)

141

142

ensures automatic synchronisation in parallel execution. Thus, the computation
(functionality) and communication (the inputs and the outputs) are made explicit
to fit to the dataflow model and are wrapped in a DF component.

5.5.2.2 Data parallelism

Data parallelism occurs when some operation or function has to be executed on the
data in aggregate data structures such as lists, arrays or trees. There are at least two
elementary forms of such operations, the first applies an operation to each element
of an aggregate data structure separately, the second gathers the elements together
into a single outcome (as in “map-reduce”). The dot product below explains this
in further detail.

5.5.2.3 Aggregate operations

In order to recognise and isolate data and control parallel properties of operations
in an application, it is beneficial to formulate the application on a level that is as
high as possible. That is to say, to specify operations on the aggregate level rather
than on the element level.

As an example, consider the standard definition of the dot product of two vec-
tors (such as used for a FIR filter or beamformer):

N N
ﬁ-b:Zai-bi (5~10)
i=1

In this definition the operations for addition and multiplication occur on the ele-
ment level, where the individual elements are indicated by the index i. This formu-
lation strongly suggests a for-loop in which for each pair of elements both opera-
tions are performed, aggregating the results step by step into a final sum. However,
in general it is difficult to parallelise such an implementation, since the operations
are entangled with each other at every step of the for-loop, leading to algorithmic
structures which are hard to disentangle, especially when side-effects arise. This
problematic character is confirmed by the extensive research to automatically par-
allelise for-loops in existing code [27, 69].

We will choose a different approach by looking at such algorithms from a more
abstract perspective: instead of defining the dot-product by using indices and by
intertwining the operations + and - together into one computational activity, we
will “lift” the operations to the aggregate level, in this case to the vector level. From
equation (5.10), it can be seen that we need:

« pairwise multiplication of the elements of the vectors. We use the notation =
for this lifted version of multiplication. Note that this usage of the operator
“is in accordance with earlier usage, since a vector can be seen as a function

from indexes to values.

o the reduction of the resulting values to a single value by using +. We use ®
to denote this interpretation of addition, i.e. the expression @® X means that
the elements of vector X are summed.

We remark that this can be generalised to other operations than multiplication and
addition as well.
Clearly, the dot product of two vectors d and b can now be defined as follows:

i-b=@® (a~b) (5.11)

Note that our notation does not involve reference to the individual elements in the
vectors, so no indices are needed. What is further important to observe is that the
operations~and @® are now visible on aggregate level. In the algorithm for the dot
product these operations are separated.

Now, it is possible to use such definitions at the aggregate level for partitioning,
so that we can formalise it as a model transformation. The™operates on the data
independently, so it is easy to parallelise. However the reduction operation @ must
be associative to be able to use parallelism. For example, splitting vector 4 and bin
three sub-vectors dj, d», ds, respectively l;l, 52, 53 (where a and b are equally long)
leads to the following parallelisation of the dot product:

ei=® (aﬂf.ji), where i=1,2,3

a-b=® [e), e, €3] (5.12)

Note that the indices here indicate that we have chosen to partition the dot product
in three parts, i.e. they are part of the partitioning, not of the application definition.
Further, the calculation of e; and - can be pipelined and has a tree-like computa-
tional structure.

Thus, data parallelism is provided by defining the operation on aggregate data
and control parallelism is provided by separating the + and - operations and by
staging the reduction operation in a tree. This last approach is an example of a
divide-and-conquer strategy [101]. Next, we will present the model transformation
to perform this partitioning automatically.

5.5.2.4 Transformation

In the previous section it has become clear that how the functionality is specified
influences how much parallelism can be exploited. It is ongoing research how to
transform such structures to the aggregate level automatically, and for now this
is a manual process. However, when the algorithm is specified on the aggregate
level, we can automatically partition it to execute data-parallel or with a divide-
and-conquer strategy. This is done with a higher-order function, that takes the
aggregate operation and generates a number of connected dataflow processes, i.e.
the step from equation (5.11) to equation (5.12) is automated (assuming the reduc-
tion operation is associative). The granularity (the vector is split in three in our
example above) is a manually specified parameter. The amount of computation
and communication per process must be matched with the capabilities of the pro-
cessors and the network.

143

144

Distribution As an example we define the higher-order transformation for the
implementation of the dot-product of equation (5.12):

hex=@ (h%)
To distribute the dot-product the inputs are split every n values. The function

split cuts a vector X in a sequence of sub-vectors of length n:

splity X = (X1, %2,...)
It can be defined recursively as follows:

splity [1=1]

split, X =a:split, b
where

(a,b) = splitAt, %

Herein, splitAt, splits the vector X into a vector of the first n elements (d4) and a
vector of the remaining elements (l;).

Furthermore, we normalise the coefficients h (h is the first element of h, and
h' the remaining part):

normalise h=1: (Jh) h'
which is only allowed if the function we distribute, the dot-product in our case, is
distributive over addition.

Finally we define a generic distribution transformation for any reduction func-
tion f that takes two arguments (/1 and X) and is distributive. For a singleton vector
(x) we have

distribute, f h (x) = x

whereas for arbitrary vectors x we have

distribute, f h % = distribute, f h' y

where
x = split, X
h = split, h
h' = head h
h' = normalise h
y=h'fx

where the inputs are split every n values, the coeflicients are normalised and the
results are recursively distributed again. Only the granularity n and the reduction
function f need to be specified. Note that we write the application of f to corre-
sponding elements from h’ and x in infix notation.

5.5.3 Design space exploration

We have touched upon a number of trade-offs that the designer must specify:
« analogue/digital co-design 145
« hardware/software co-design
« the way the functionality is specified

o the granularity of the partitioning

As these are trade-offs, it is very helpful for a designer to try a few different alterna-
tives, so-called design space exploration. With the help of UN1T1, in many cases it is
simply a matter of moving the ADC or applying a different parallelisation strategy.

By using aggregate operations the model is independent from the number of
data elements. However, the number of data elements does influence the number
of processes or the amount of computation and communication per process. As
the partitioning is automated we can quickly explore the results with a different
number of elements and with different granularities, without any changes to the
model besides the granularity.

5.6 CONCLUSION

In this chapter we have presented the formalisation of Un1T1. UNITI provides a
framework for multi-domain modelling and simulation, and as such unifies time,
signals and components in the CT, DT and DF domains.

In each domain components are signal transformations, but the signals them-
selves are different. In the CT domain, signals are functions of time; a transformed
signal is thus also a function of time. Moreover, the time reference can be changed,
enabling the framework to include time transformations in the formalism, and
allowing exact simulations of models including such transformations. In the DT
domain signals are values; values can change over time, but that is outside of the
influence of the DT component. In the DF domain signals are lists of tokens repre-
senting channel updates. Therefore, DF signals represent the change of tokens over
time to match with the standard interpretation of signals in the CT and DT domain
and allowing the integration of the DF domain. This is significantly different from
the standard representation of dataflow models, where channels contain tokens
and provide the connection between processes. In UN1T1, the current contents of
the input channels are part of the DF component, together with an implementa-
tion of the firing rules and channel management. These tasks are provided by the
Uni1Ti1 framework.

As components in all domains are signal transformations, we can use unified
sequential, parallel and feedback composition. Sequential composition uses the
output of the first component as input of the next. Parallel composition provides
the first signal to the first component and the second signal to the second com-
ponent. Feedback composition feeds back the second output signal to the second
input of the same component, resulting in a component with a single input and a

146

single output thereby hiding the feedback signal. Feedback is also used to support
components with state.

In UN1T1 the notions of time are separated. The time used locally at a compo-
nent can be different from the simulation time used for the final composed model.
The sample time also does not have to match with the simulation time, as the sim-
ulation time is changed to the latest sample time, locally at the ADC component.
Components that deal with change over time, such as integration or differentiation,
in the general case need a solver. In all tools, this solver is global and uses a global
approximation time step. In UN1TI the used solver is locally applied for the compo-
nent, enabling the designer to choose a specific solver, as well as the approximation
time step used, at each component.

For integration, a DT component is embedded into a CT component. This is
achieved by letting the time at which a CT output signal is evaluated determine the
value of a CT input signal to which the DT component is applied. Furthermore, the
embedding of a DT component is automated if a CT and DT component are com-
bined. To integrate a DF component, it is embedded in a DT component by using
the values of a DT signal as token updates, and by using a single token as output
value. However, their integration limits the tokens at the boundaries of a dataflow
model to have a value representation. The sample time of a DT signal determines
the token arrival time at input of the dataflow model, thereby providing a time
reference for the execution time and thus token production time of dataflow pro-
cesses. The embedding of DF components is also automated. The final composed
and integrated component is a CT component, thereby integrating the time in the
model. This is deliberate, so we can use this component to evaluate the model over
time for simulation.

Feedback in the model will trigger a computation that recurses back in time to
a terminating condition during simulation. This is not efficient as results are recal-
culated for each simulation time step. Therefore, state is introduced to remember
previously calculated results, forcing the time in the model to be causal and ordered.
Keeping state is implemented by using continuations, i.e a component provides an
output and an updated version of itself. Furthermore, components can provide a
visualisation, either a plot or a figure of the current state of the component. These
continuations and visualisations are combined, up to the final component repre-
senting the model, during composition.

Model transformations are used for division over domains during the co-design
step and division within a domain during the partitioning step. The automated in-
tegration of multi-domain components facilitates domain independent definitions,
thereby allowing their domain to be determined by the context and allowing fast
and easy changes to the model. Within a domain, aggregate operations, such as
element-wise or reduction operations, allow model transformations by exploiting
the mathematical properties of a definition.

Overall, UNITI provides a framework for modelling CT, DT and DF compo-
nents in a single model. In combination with mathematical definitions of model
components, this allows a model-based design flow including support for model

transformations. Furthermore, different notions of time are represented in the
model and integrated with UN1T1, enabling exact simulation of time transforma-
tions and modelling execution time of dataflow processes.
147

CHAPTER

Case study

ABSTRACT - In this chapter we will consolidate the work presented in the previous
chapters with a case study on the design of a generic beamforming platform using
a tiled reconfigurable architecture. The design flow and framework of UNITI is
applied during the design process. First, a specification of the beamforming appli-
cation is provided, which is executable for simulation and verification. Next, this
specification is subdivided into sub-components representing the environment, the
architecture and the application during the analogue/digital and hardware/software
co-design step. As a result, components are modelled in the CT, DT and DF domain.
These models are compared to Simulink and found to be more computationally
efficient whilst also supporting exact time delays as experienced by the antenna
signals. Thereafter, the partitioning step subdivides the beamformer onto a tiled
architecture. During the design process the model becomes more specific. For the
mapping and implementation step we will use the adaptive beamformer on a small
architecture consisting of three reconfigurable processors. The case study is con-
cluded with a discussion on the applicability and flexibility of UNITI for the design
of a beamforming platform. UNITI is found to be very capable, yet the mapping
and implementation steps are still completely manual and could greatly benefit if
supported by UNITL.

In this chapter the design flow and framework of UN1TI is applied to a non-trivial
case study. An embedded system is designed for the phased array beamforming
application from chapter 2 based on a tiled reconfigurable architecture as presented
in chapter 3. This is achieved using a single model which is refined into a more
detailed model by the design steps presented in chapter 4 and supported by the
formalisms for modelling domains and model transformations from chapter 5.

Parts of this chapter have been published in [KCR:3], [KCR:6], [KCR:9], [KCR:10], [KCR:11]
and [KCR:4].

150

The phased array system consists of a processing part performing the beam-
forming operation and beamcontrol and a front-end for each antenna signal.The
case study also includes a model of the environment to generate the signals received
at the antennas of the phased array system, allowing us to execute the model and
verify the correct operation of the beamforming and beamcontrol processing. In
chapter 2 we have developed digital signal processing (DSP) algorithms to adap-
tively steer the main beam in order to track a moving source. Therefore the model
of the environment generates source signals with a moving position so as to accu-
rately simulate the antenna signals that the real system would receive. However,
this means the signals generated from the environment must model the relevant
properties of the environment exactly, otherwise we can not differentiate whether
errors are caused by the model of the environment or caused by the adaptive beam-
control algorithm. As we found in chapter 4, Simulink and other tools do introduce
interpolation inaccuracies when modelling time delays such as experienced by the
signals from a source to each of the antennas of a phased array receiver. This is
especially relevant because for each antenna of the array, the delay of a signal is
different, so a large array has many time delay components (which will even vary
over time), causing a major problem in Simulink. It is possible to approximate the
delay with a phase shift as a workaround, but that still introduces inaccuracies and
is therefore only valid for narrowband signals, excluding wideband beamforming
applications. UN1TT, as we will see, is able to model the environment for a phased
array system exactly.

We will develop the case study in three parts with increasing complexity:

« a simple beamformer with the path length between the transmitter of the
source and each receiver of a planar array modelled by time delays and beam-
steering based on a phase shift correction with a fixed steering angle, i.e.
without a beamcontrol algorithm,

« an adaptive beamformer using a ULA and E-CMA for adaptive beamcontrol,
thereby introducing QPSK modulated signals and feedback loops in the sys-
tem,

« and a hierarchical beamformer with A-CMA as adaptive beamcontrol algo-
rithm.

These are presented as such to gradually develop the model, each time focusing
on a specific part of design; the model of the environment, the adaptive control
algorithm and hierarchical beamforming respectively. During the design steps the
model is refined and therefore becomes more specific; for the later stages of the
design process we will use the E-CMA-based adaptive beamformer on the LEON
SoC platform, a small tiled reconfigurable architecture consisting of three Mon-
TIUM reconfigurable processors and a NoC (see section 3.3.2).

In section 6.1 we will present a formal specification of the basic functional
behaviour of the system. During the analogue/digital and hardware/software co-
design step in section 6.2 the case is refined into a signal flow model and compared
with a Simulink equivalent (in three parts). The processing is to be performed on
multiple reconfigurable processors. The beamcontrol is expected to run on a sin-

gle processor, but the beamforming processing must be partitioned as presented
in section 6.3. Next, we map the adaptive beamformer on a tiled reconfigurable ar-
chitecture in section 6.4, and the implementation is presented in section 6.5. The
Un1T1 model provides the input signals for the implementation, enabling verifica-
tion without requiring actual transmitters, receivers and antenna front-ends. Fi-
nally, the results are presented in section 6.6.

6.1 SPECIFICATION

We would like to design a beamforming system supported by a realistic simulation
of the system and the environment. The final system should be suitable for multi-
ple beamforming applications and therefore a tiled reconfigurable architecture is
proposed for scalability and flexibility. In this section a formal specification of the
functional behaviour is presented.

Simple beamformer A basic beamforming system is based on the Friis equation
(section 2.2) and consists of the correction of the time delays caused by the path
length differences between sources and receiving antenna elements. Below we give
a mathematical specification for a beamforming system, assuming a single source,
and an array of antennas.

Let s be the signal coming from this source, i.e. s is a function of time. Suppose
that the position of antenna a; is indicated by p;, and that the DoA of signal s is
indicated by d. Note that both p; and d are vectors (with their origin at the centre
of the array), though p; is a vector (x;, y;,z;) of cartesian co-ordinates whereas d
is a vector (r, a, y) for range, azimuth and elevation.

Clearly the delay §; depends on the position p; of antenna a; and on the direc-
tion of arrival, and can be calculated as follows (c is the speed of light):

5, e(pi,d)

9

where £(p;,d) is the length function which expresses the distance between an-
tenna a; and source s, defined as follows:

€ ((xiy521) s (1 0,7)) =\ (xa = x0)2 + (ya - y1)* + (2 - 1)’
with

r-sin (a) - cos (y)

X4
ya =r-cos(a)-cos(y)
r-sin(y)

Z4

Note that §; is a scalar value. However, as described in section 5.1.1 we consider the
delay of a signal s with a value & as a signal transformation, i.e, as a function with

151

signal s as argument and a changed signal as result. Remember that this delayed

signal is defined as
delays(s) =t~ s(t-9)

Thus, the sequence of values of the delayed signals at time ¢ for the array of antennas
(a1, az,...) is (s is the original signal):

o(t) =(delays (s)(t),delays,(s)(t),...)

The phase correction w; for antenna a; and steering direction (ay, yo) is calculated
as (A is the wave length of the carrier):

22

w; = ¢’ XAk
where Al; is the difference in length between the origin and antenna a;, projected
in the steering direction, calculated as follows (- is the dotproduct of two vectors):

Ali = <xi,}/i,Zi) . (1: (20D)’0>

Let w be the steering vector (w;, w,, . ..) and let w* be its complex conjugate. Then
the beamformer bf applies a phase shift correction and is defined as the function
(N is the number of antennas):

w*.a(t)
bfys =t —=
fi. N

The above mathematical specification can be expressed directly as Haskell code
as shown in chapter 5. This code is shown in listing 6.1. Most of the code is
straightforward from the definitions. We only remark that xs!i select the ith
element from list xs, ** implements the dot product as defines in section 5.5 us-
ing zipWith (%) for the element-wise multiplication and sum for the reduction
with addition. Furthermore, spher2cart implements a coordinate transforma-
tion, and although angles are represented as degrees for clarity the trigonometric
functions expect radians. Finally, complex numbers are used, where :+ is an in-
fix operator expecting the real and imaginary part, and cis construct a complex
number with magnitude 1 and its argument as angle. For simulation, a number of
constants are defined that are used in the definitions, e.g. ps represents the antenna
positions. Simulation is performed by evaluating the model for a list of simulation
time steps ts using map, which applies the model to each time step one by one.
Note that most definitions are globally defined and used in other definitions.

By executing this code we have verified that the output signal of the beam-
former corresponds exactly to the signal of the source when steered in the correct
direction. Figure 6.1 shows the resulting signal when mispointing, i.e. a 40 MHz
sine source with amplitude 1 and initial phase 0° arriving from 11° azimuth (shown
in light grey) while the 4-element ULA beamformer is steered to —3° azimuth. As
expected the sine wave is attenuated because of mispointing and the initial phase
has shifted because the distance to the centre of the array (100.31) is not a multiple
of the carrier period (see section 2.4.2).

1

2 —— model

3

4

5 xs ! i = xs !l (i-1)

6

7 hs ** xs = sum (zipWith (*) hs xs)

8

o delta i = (ell pd)/c

10 where

1 p = ps!i

12

13 spheracart (r,a,e) = (x,y,z)

14 where

15 x =71 * sin(a) * cos(e)

16 y =71 * cos(a) * cos(e)

17 z =1 * sin(e)

18

19 ell (x,y,z) (r,a,e) = sqrt ((xd-—x)72 + (yd-y)?2 + (zd-z)"2)
20 where

21 (xd,yd,zd) = spher2cart (r,a,e)
22

23 sigma t = [(delay (delta i d) s t) | i <= [1.. n]]
24 where

25 d = doa t

26

27 w i = cis (2*pi/lambda * (dl i))

28

20 ws = map w [1..n]

30

31 dl i = [x,y,z] ** [xd,yd,zd]

32 where

33 (x,y,2) = ps'li

34 (a,e) =b

35 (xd,yd,zd) = spheracart (1,a,e)
36

37 bf ws sigma = \t —> ((map conjugate ws) ** (sigma t)) / (n :+ o)

39 model = bf ws sigma

40
41

42 —— simulation

43

44

45 C = 300*1076

46 f_c = 40*1076

47 lambda =c / f_c

48 d = lambda/2

49

so ps = [(x—(n-1)/2)*d, o, o) | x <= [o..(n-1)]]
51

s2 b = (-3, 90)

53

s4 d = (1000, 11, 90)

55

56 s =\t —> cis (2*pi*f_c*t)

57

s8 stepsize =1 / (50 * f_c)
59 ts = [o,stepsize..100e—-9]
60 sim model = map model ts

LISTING 6.1: Simple beamformer specification

QQQ NOILVOIAIOAdS T'9 @OQ

154

1 14

0.5 /\ /\ /\ / 0.5
] <
= =
= =
80 20 A 60 80 S0 J 5 10 15 00
g g
S+ <

0.5 0.5-

1) 1)
time (ns) time (ns)

FIGURE 6.1: Beamformer input (in grey) and FIGURE 6.2: Correction by E-CMA for initial
output for N = 4, 9 =11°and 9y =-3° mispointing

FIGURE 6.3: Adaptive algorithm

Adaptive beamcontrol In the above specification, the DoA d and steering vector
w are fixed over time. For the cases with adaptive beamcontrol, the DoA is dynamic
and depends on time. Thus, DoA d becomes a function of time t. Furthermore,
the steering vector or steering angle is determined by the beamcontrol algorithm.

In order to define adaptive beamcontrol, we first give a general formulation of
an adaptive algorithm (see figure 6.3). An adaptive algorithm consists of a compo-
nent C which transforms an input signal i into an output signal o, given some steer-
ing or correction factor f. The correction factor f is then updated by the adaptive
control component A based on the input 7, the output o, and the (previous) factor
f. Such an algorithm is specified by the following equations:

0=C(f,i)

f =A f (i N 0)
Note that in these equations all variables are functions over time, and that the re-
sults of C and A are also functions over time. In practice only a finite number

of correction factors are calculated, i.e. the function f then becomes a sequence of
values (fo, fi, . . .), with fy a given initial value. The equations then transform into:

o(t)=C(fi,1)(¢)
fra= Ay, (i,0) (1)

Note that in these equations i and o are still functions over time.

To apply the above to adaptive beamforming, let o be a vector of input signals
for the beamforming component b f, y the output of b f, and w the steering vector
(corresponding to the correction factor above). As above, o and y are functions
over time, whereas w is a steering vector at a specific moment in time. In our case
the output y thus is defined as:

Y =bf(i.0)
The E-CMA algorithm (see section 2.4.2) is defined as follows:

ecmay (0,y) = t>w=u-e-0(t)

where
8- (ly(t) = y(OF) + - (-M-sin (M- £y(1)))
4-y(1)

Note that M = 4 for QPSK modulated signals. Strictly speaking, the notations =

(for element-wise vector subtraction, see section 5.5) and - (for scalar-vector multi-

plication) are not necessary in a mathematical specification. However, anticipating

the implementation we choose to make the parallelism in these operations explicit.
Now the updated steering vector w” at time ¢ is

E =

w' = ecmay (0,y) (t)

To simulate this, we have to calculate the results over a sequence T of time moments,
with initial steering vector wy. That is, we have to calculate

resultsy, (T)
with results recursively defined as
resultsy (T) = y(t) : results;, (T")
where

y= BFg,)U

w' = ecmay, (0, y) (t)

and t is the first element of the sequence T and T’ the remaining elements of T,
and with “” the list constructor operator.

Note that time is discretised here for the simulation time only, and not for the
time delay as discussed in chapter 5, meaning that the calculation of the various
time delayed signals in the beamformer is exact. In addition, the time step for
simulation determines the update step for the adaptive beamcontrol algorithm, i.e.
the time step for simulation is the same as the time step for updating the steering
vector. We will uncouple these two time steps in the next section.

155

/

SN N
w0
N VAN

CASE STUDY

o
~
[25)
F
9
<
any
)

g g
g g
3 200 s
B0 -24 59
160
M 40 time (us)
80 -60 40 5o 0 20 o 80 -60 40 5o 0 20
40 60 go 40 60 8o
angle (°) angle (°)

FIGURE 6.4: E-CMA radiation pattern for FIGURE 6.5: A-CMA radiation pattern for
linear increasing DoA from -25° to 60° linear increasing DoA from —25° to 60°

As before, the above specification is immediately translated into Haskell and
evaluated for simulation. The adaptive beamformer is simulated in a scenario in
which the azimuth « increases over time by 4 x 10° ¢, and initially starts at —25°.
The range r is fixed to 1000 and the elevation y to 90°. Thus the DoA d(t) is:

d(t) = (1000, (-25 + 4 x 10° £)°,90°)

Figure 6.2 shows the beamformer output for a simulation from 0 us to 0.2 s
with an 8-element ULA and a sine wave source. The DoA of the source is —25° while
the array is initially steered to 0°, causing a distorted signal which is quickly cor-
rected by E-CMA. Figure 6.4 shows the resulting radiation pattern of the E-CMA
algorithm over time for a simulation from 0 ps to 200 ps. In this time frame the
DoA increases from —25° to about 60°. As there are no interferers E-CMA causes
the beamwidth to widen as the angle increases. The E-CMA also increases the gain
to compensate for the modulus decrease because of mispointing besides changing
the phase. Note that the input signal is a unmodulated (analytic representation of
a) sine wave resulting in a single modulation point.

Hierarchical beamcontrol For hierarchical beamcontrol the A-CMA algorithm
is used, defined as follows (see section 2.4.3):
acmag (o,y)=t—>0—pu-¢

where
e=(Iy(OF -1)- (o(6)"B (1))
B'.,=(c—1)-¢p- e(e=1) 90 forallc,r € {1---N}
¢o=j-2nd-sind
¢p =j-2nd-cosb

Here, B’ is multiplied on the left with the hermitian of the vector o (¢), and on the
right with the vector o (t) itself, using a matrix multiplication.

A-CMA calculates a steering angle 6, while the beamformer expects a steering
vector. The steering vector w can be calculated from 6 using a LPT:

w; = el msin 0 foralli e {1,...,N}

with an antenna spacing of }/2.

Figure 6.5 shows the radiation pattern over time for the same scenario as above.
The result looks much cleaner because there is no gain variation and the radiation
pattern is fixed over the angle, since no gain taper is applied by A-CMA.

6.2 CoO-DESIGN

During the co-design step, functionality of the initial specification is divided into
sub-components representing the environment, the architecture (hardware) and
the application (software). This is achieved by encapsulating functionality in com-
ponents and connecting them using the sequential, parallel and feedback compo-
sition operators defined in chapter 5. Furthermore, domains are introduced, i.e.
components are in the CT, DT or DF domain. In order to keep the complexity
manageable, this is performed in three steps; first basic beamforming, then beam-
control, followed by hierarchical beamforming. During each step a corresponding
Simulink model is used for comparison and benchmarking. For this design step
we will assume a single core architecture with a dedicated front-end per antenna.

6.2.1 Simple beamformer

The division of functionality over components is based on the system design pre-
sented in section 2.3.3. To validate the phased array receiver, the signals received
at the antennas are generated, thereby modelling the environment. Therefore, a
source, a transmitter and a channel are added. The model of the channel imple-
ments the delay from the source to the different receiver antennas.

The RF front-end is implemented in analogue hardware as the frequencies are
too high to allow the use of only digital hardware. After down-conversion, the
signals are digitised and filtered by the AP block in fixed digital hardware. Thus,
between the RF frond-end and the AP for each antenna, an ADC is added. Beam-
forming is performed on the processor, represented as a DF process.

6.2.1.1 Simulink model

The Simulink model of the simple beamformer is shown in figure 6.6. The channel
implements a variable time delay for each transmitter (Tx) and receiver (Rx) pair.
For each transmitter the source signal is multiplied with a directional dependent
gain in the direction of each receiver. For simplicity, the directional gain is 1in all
directions, i.e. omni-directional antennas are used. A multi-dimensional matrix of
signals is used between the blocks; one dimension for the sources (each has a single
transmitter), a second dimension is used for the signal to each receiver (besides

157

158

Environment System

Front-gnc Processing

‘ dah}—. date QAD{M m}» 9 Lt L MAD{H if}—ba df*"{ir\ DMHS » date
FiF 4P B

Sources Tx Channel Fix F Sinks

FIGURE 6.6: Simulink simple beamformer model

a dimension for time). At the receiver side the signals from all transmitters to
that receiver are summed, thereby reducing the dimension of the matrix of signals.
The RF and AP blocks only pass-through the signal because we use a baseband
equivalent model, i.e. up and down conversion are replaced by a complex valued
signal representation. The ADCs use a ZOH to sample the signal, no quantisation
is used. The beamformer applies a complex multiplication for beamsteering with
a fixed steering angle. At the beamformer a dimension for each beam is used, but
for presentation purposes we will use only a single beam.

6.2.1.2 UNITI model

The UniTi version of the simple beamformer model is illustrated in figure 6.7. The
figure also shows the used structural hierarchy. At the top level of the design the
model consists of the environment followed by the beamforming system:

model = environment > system

Below we will explain how the environment and the system are formalised, and
how the model is simulated over a sequence of time steps.

Environment First ofall, the environment models one or more sources together
with their transmitters that send the signals. We will assume that a source generates
the signal as it is sent by a transmitter. Suppose

sources = (srcy,srca,...)

that is
sources = srcy || srey || ...

The fact that a source generates a signal formally means that each src; is a function
such that src;() is a signal. Each antenna receives the signal from each source
through a channel for which we now model the time delay. A channel chj; from
source j to antenna i in fact is a signal transformation which delays the signal s;:

chji(s;) = delays,(s;)

Since the DoA d; of source j and the position p; of antenna i are known, J;; can
be calculated as on page 151.

d

(

=

159

i
HRFHA/D

Analogue frontend

Digital processing

Environment System

FIGURE 6.7: UNITI simple beamformer model

The environment now is the total of the sequential compositions for all j, i of
srcjand chj;:
envj; = src; > chj;

Let
CI’lS,’ = Ch]i || ChZi ||

then
sources > chs;

delivers all signals for antenna i. Now let
channels = chs; || chsy || ... || chsy
then the total environment is
environment = (||* sources) > channels

where ||* creates as many copies of sources (in parallel) as needed.

System The system consists of (i) the parallel composition of a frontend for
each antenna, (ii) a part which processes the outputs from these antenna frontends
and produces beams, and (iii) the parallel composition of a sink (snk) for each
beam to plot the result, i.e.

system = (||* frontend) > processing > (||* snk)

Concerning (i), the frontend of each antenna, we remark that it consists of a re-
ceiver rx, an r f frontend and an adc, i.e.

frontend = rx > rf D> adc

The receiver rx gets delayed signals from each source, i.e. rx is a function which
adds a sequence of delayed input signals into a single output signal as defined in
section 5.5:

rx =@

Note that we consider rx here as part of the system under design, and that the
signals from the environment are combined at the receiver antennas. Note also that

160

the r f and adc for each antenna are the same. Here we will assume that the signal
transformation r f only passes through the signal, i.e. f is the identity function,
though for later refinements of the model, 7 f can be defined differently.

The adc (with sample period h) is defined as in section 5.1.2:

adcy (s) = t—s(|t/h]-h)

The frontend is identical for each antenna. That is possible because the influ-
ence of the position of the antenna is already accounted for in the delay of each
input signal, as discussed above. To combine the frontends of all antennas into
one component, we simply have to compose as many frontends in parallel as there
are antennas.

Concerning (ii), the processing part consists of antenna processing (ap) and
beamforming (bf), where ap is dealt with in the DT domain and beamforming in
the DF domain. As with the 7 f frontend we assume that ap is the identity function,
though it might be defined differently. There are as many ap components needed
as there are antennas and their outputs are input for the beamforming operation.

The definition of bf differs from the definition in section 6.1 where bf was a
signal in the CT domain, whereas now it is a function from input tokens to output
tokens. Thus:

. whex
bfi (%) = N
In order to wrap the function b f in a DF component, we first have to apply the [
operator and then we have to initialise the internal state with an empty state using
the {) operator (see section 5.1.3).

The total processing chain now becomes:

processing = (||" ap) > (@bfa) 1 [1)

where w is the same steering vector as defined in section 6.1.

The function bf calculates a single beam. Without going into details, we men-
tion that in case more than one beam has to be formed using the same antenna
signals, we defined a composition operator [>* which duplicates the input signals
to match the number of beamformers. Note that duplication of input signals is not
the same as parallel composition of signal transformers.

Finally, concerning (iii), the snk components plot the signal from each beam
as a side-effect and returns a vacuous output.

Simulation The model as derived above contains components in the CT domain
(sources, channels, rx, rf, adc), in the DT domain (ap), and in the DF domain
((cbfi) 1 []. The sequential composition operator takes care that the various
domains are integrated, e.g., by embedding the ap component defined in the DT
domain in a CT domain component (see section 5.3).

Again, all definitions above can be straightforwardly reformulated in Haskell.
Since the composition operators are also defined in Haskell, the whole model can
be simulated by evaluating it as a single Haskell program.

In order to evaluate the model, it first has to be applied to the empty signal ().
Since in this case there are many sources, a nested structure of ()’s has to be pro-
vided. Still, we will denote this vacuous input by (). As on page 155 a simulation
calculates the results for a sequence of time steps T:

simulation = results,og. ()(T)
The sequence of results is defined as
results;(T) = y:resultsp(T")

where
. f) = f(1)

as explained in section 5.4.3. As before, t is the first time step in T, and T’ consists
of the remaining time steps in T.

Radiation pattern As an example of the flexibility of the definitions, we reuse
the components from the definitions above to generate radiation patterns. This is
achieved by calculating the transfer function over all angles.

The radiation pattern is calculated by setting the (complex) source signal to
1¢/° and calculate the result over all source angles («, y) with a fixed steering angle
(@0, y0):

P(@,9) = | bfiapy)(®)]

where

X =(src > channels > (||* (rx > adc))) () (0)
src ()=t~ ((ay) ,ej'Z"f"t)

Note that the source src now is a function which yields the complex signal includ-
ing its corresponding DoA («, y).

Figure 6.8 shows a radiation pattern of a 3 by 5 element array, with positions
that are randomly shifted slightly from their original positions, steered to 80° eleva-
tion. This results in a flattened beam and somewhat chaotic side lobes. Figure 6.9
show the radiation pattern of a 6-element ULA located along the x-axis. Note the
array is only directional in one dimension.

6.2.1.3 Comparison

The graphical block-diagram representation of Simulink is intuitive and has sim-
ple semantics. However, such a graphical representation is less flexible when the
model is changed during development. A textual representation is easier in that
respect, but keeping an overview of the model is more difficult. Therefore, a lot
of structural hierarchy is used in the above UN1T1 model. Furthermore the com-
position operators and aggregate data structures increase flexibility. Although the
definitions are cryptic, they are completely independent of the number of antenna

162

FIGURE 6.8: 3D radiation pattern for a 3x5 FIGURE 6.9: 3D radiation pattern for a 6-
array steered to (110°,60°) element ULA

elements and sources, while specifying such a model graphically would be quite
laborious and inflexible for more than a few antennas and sources. For that reason
multi-dimensional arrays are used as a data-structure in the Simulink model. The
representation of the operations on the signals in Simulink is, however, not as ex-
plicit as the aggregate operations in the UNITI model, making it more difficult to
understand the model. In addition, with the UNITI model the type checker ensures
that the correct dimension of the aggregate structure is used (each dimension has
a different type for identifying the signal), while in Simulink mistakes are easier.

Of major importance is that UNITI uses exact time delays, while Simulink mod-
els uses interpolation for simulation (see section 4.3). The UN1T1 model is therefore
more accurate but also more efficient. This is especially relevant for this case study,
as a time delay is used for each transmitter receiver pair.

As an example we simulate a 5x5 planar array with two sources at a 20° separa-
tion in azimuth angle. Thus 2x25 time delays are used to implement the channel
between the sources and antenna elements. One source is a 1kHz cosine and the
other a 4 kHz cosine; their combined result is shown in light-grey in figure 6.10. A
simulation is performed, both in Simulink and UN1T1, from Os to 4 s with a (sim-
ulation) step size of 0.01s. The result when steering the beam in the direction of
the first source thereby suppressing the second source is shown in dark-grey. In
the Un1TI model this is exactly the result as expected, however, the same system
in Simulink has an error in the range of the step size (after the start-up effect) as
shown in figure 6.11. This is because the simulation step size also determines the
granularity of the interpolation in Simulink, while in Un1T1 it only determines
when a result is calculated for the plot as explained in chapter 5.

The execution time for both models was measured using a 2 GHz Core 2 Duo
with 4 GB RAM. For Simulink R2010b the execution time was measured using the
Simulink profiler, while for the UN1T1 model the execution time was retrieved from
the operating system. The DoA was used as a parameter for the UNITI simulations
to ensure the results were not cached by the interpreter. The results are shown

0.1

<
w

(]

s <
= E
g- 0f2 2.5 3 3.5 4 a,
g g

0.5
04 i i i
Ny 2 25 3 35 4
time (s) time (s)
FIGURE 6.10: Beamformer result FIGURE 6.11: Simulink error

in table 6.1. The numbers are averaged over 10 runs after 2 warmup runs. When
simulated in an interpreter, the UN1TI simulation is slightly (1.06 times) faster, so
even in the interpreter exact results are gained for a comparable performance. The
compiled UNITI version is about 10 times faster while the compiled Simulink model
is about 2.5 times faster, giving the UNITI implementation a 3.35 times speed-up
compared with the Simulink implementation. For both, the execution time scales
about linearly with the number of antennas.

TABLE 6.1: Simple beamformer execution times

Interpreted Compiled

Simulink 0.987 s 0.394s
UntTr 0.927s 0.118s
Speed-up 1.06 3.35

6.2.2 Adaptive beamformer

For the adaptive beamformer, the simple beamformer is extended with E-CMA as
adaptive beam-control algorithm. This introduces feedback in the model because
of the control algorithm. Furthermore, E-CMA uses iterative updates of the steer-
ing vector and therefore has state.

E-CMA is a tracking algorithm, which needs the initial DoA of the source.
By using reconfigurable hardware, the beamforming functionality can be replaced
temporarily by DoA estimation. For the adaptive beamformer case we assume the
initial positions of the sources are known.

The source signal is QPSK modulated, of which the fixed constellation points
are exploited by the E-CMA algorithm to improve tracking of the source. As input
data we use 2 bit symbols which are encoded as a constellation point by multiplying

163

164

1 254
0.5 22.5
] ~—~
= e
= [5)
a0 25 5| 75 190 gb 0 100 20 300 00
= =
<
0.5 -22.5
1) -454)
time (ns) time (ps)

FIGURE 6.12: QPSK modulated signal FIGURE 6.13: DoA of source (dark grey) and
A-CMA steering angle (light gray)

with 7 to get the phase of the carrier signal. Such a QPSK modulated signal (from
the UN1TI model) is shown in figure 6.12. These signals have a large bandwidth, be-
cause of the discontinuous changes of the signal. To limit the bandwidth typically
(e.g. for the DVB-S application [28]) a pulse shaping filter is used at the transmitter
to suppress high frequency components. At the receiver, a matched filter is used to
suppress noise before demodulation. The same root-raised-cosine (RRC) filter is
used for both the pulse shaping filter and the matched filter, and is implemented by
a 25-tap FIR filter [14]. The signal is up-sampled three times because of the filter.

6.2.2.1 Simulink model

Figure 6.14 shows the system part of the Simulink model. The antenna signals after
the AP and the output of the BF are used as input for E-CMA (BC) to compute
the next steering vector. The current steering vector is input for the BF, so there is
a delay for the steering vector breaking the feedback loop (this is implemented by
letting BC store the last steering vector while computing the next one).

A variable time delay is used to implement the channel (as for the simple beam-
former). Note that because the DoA of the source is changing, the delay is indeed
varying as it depends on the DoA of the signal. The phase of the carrier changes at
the symbol rate of 36 Msymbols/s or every 27.78 ns. The simulation step size must
be smaller than this, otherwise the time delay block interpolates a signal with a
phase that changes each sample. Including the three times up-sampling for the
pulse shaping filter, we will use a 30 times smaller step size. The interpolation er-
ror is in the range of the step size, causing a relatively large 3 % amplitude error.
However, as for the DVB-S application, the SNR is expected to be less than 16 dB.
This amplitude error is acceptable (3 % amplitude error is about 30 dB SNR).

System

Frant-gnd Frocessing

B H-1] 12 an —e it —e] o d i
¥ date
w

ot 5
Fi RF ADC AP

¥
E

BF Sirks

Y
EC

FIGURE 6.14: Simulink adaptive beamformer model

The pulse shaping filter reduces the bandwidth of the input signal. After fil-
tering it can be considered a narrow-band signal and we can also approximate
the channel with a complex multiplication by a phase-shift (section 2.2.2). This
removes the need for up-sampling, reducing the number of simulation steps 10
times (from 30 times to 3 times, three times up-sampling is still needed for the fil-
ter). Furthermore, the approximation error is smaller; with a carrier frequency of
10 GHz and a bandwidth of 50 MHz the error is about 50/10000 =0.5 %. The Simulink
model with a phase shift approximation is therefore included for comparison.

6.2.2.2 UNITI model

We start with giving the definitions of a single src that replaces the sr¢;’s in the sim-
ple beamformer model, and which will be explained below. The QPSK modulated
source signal is defined in UNITI as:

src () = rateg; (input) > qpsk > rrc > dac
apsk (x) = e/
rrc = firg, f) 0

where h consists of the RRC filter coefficients. The in put is a sequence of random
2bit symbols, which are QPSK modulated by gpsk and filtered by rrc, before being
converted the analogue domain with dac.

As such, the input, QPSK modulation and FIR filter are defined in the DT do-
main, while the components of the environment are defined (as for the simple
beamformer) in the CT domain. Therefore, the sample rate of the DT signals must
be defined to connect those components, which is achieved by rate,, with dt the
sample period. The output signal of rate,, (input) is a piecewise continuous func-
tion of time, causing the rest of the DT components to be lifted to CT components
as explained in section 5.3. As a result the dac is essentially passing through the

165

166

Digital processing

FIGURE 6.15: UNIT1 adaptive beamformer model

signal. For simplicity we have up-sampled the input symbols three times so that
they have the correct rate for the pulse shaping filter'.

The rest of the model (e.g. model, environment, system, etc.) is the same as
for the simple beamformer, except for the processing component which is shown
in figure 6.15. The signal flow diagram is the same as for the Simulink model, except
that in the Simulink model the RRC filter block is included in the BF block.

In figure 6.15 the component consisting of bf, rrc and ecma contains a feed-
back loop, preceded by ap. Thus, the structure of this component is

processing = (||* ap) > (O F)
with F of the form

F = (Z,w)e (y,w)

where

(x,w) > (@) N []) > rre) >y

(y,%) = (ecma f} wp) » w'

Here, the arrow = means that F in addition contains an internal state which is up-
dated each time that F is evaluated. The definition of F can be read from figure 6.15
in a straightforward way: Between the two > arrows there is a component which
has internal state. On the left hand side there is the input to the component, and
on the right hand side there is the output of the component. During evaluation of
the component, its internal state is updated. In Haskell this translates directly to
the arrow notation[73].

The definition of ecma is a discrete version of the definition used for the speci-
fication in section 6.1. In addition, state is used for the steering vector. Thus, three
components in the UNI1T1 model have state: the pulse shaping filter, the matched
filter and E-CMA. In addition, there is one feedback loop for the beamcontrol al-
gorithm.

' A sample rate conversion component is a little involved as it needs to save the last sample as state
and repeat it n times as output, with » the rate conversion.

6.2.2.3 Comparison

For comparison, we will use a single source with random input symbols. For the
array we will use a 32-element ULA with the antennas at /2, and the source has a
DoA that changes in a sine wave motion from 0° to 30° azimuth and back, i.e. half
a period of the sine wave. The symbol rate is 36 Msymbols/s, which is up-sampled
three times to 108 MS/s. This results in a step size of about 10 ns for the Simulink
model with a phase shift based channel and is also used as simulation step size for
the Un1T1 model. The Simulink model with a time delay based channel has a step
size of 1 ns.

The execution times of a simulation from 0 s to 100 ps averaged over 5 simu-
lations are shown in table 6.2. Note that the time delay Simulink model computes
about 100 000 simulation steps and the other two about 10 000 simulation steps.
The Simulink model with time delays takes 35 times longer than the model with
phase shifts when interpreted and 5 times when compiled. This is expected as 10
times as many samples are computed. The UN1T1 model is about 3 times faster than
the Simulink model with phase shifts (for the compiled versions), with the UNITI
model using an exact time delay based implementation for the channel.

TABLE 6.2: Adaptive beamformer execution times

Interpreted Compiled

Simulink with time delays 826.326's 38.686's
Simulink with phase shifts 23.470s 8.004s
Uni1Ti 18.926s 2.951s

6.2.3 Hierarchical beamformer

For the hierarchical beamformer, the adaptive beamformer is extended with two
stage beamforming; the first stage is in the analogue domain and the second stage
is in the digital domain. Furthermore, we have exchanged the beamcontrol algo-
rithm for A-CMA (see section 2.4.3). A-CMA determines the DoA of the QPSK-
modulated source signal (the same as used for the adaptive beamformer). The DoA
is used as a steering angle for both the analogue and the digital stage. As A-CMA
computes a steering angle, we will use a LPT as beamsteerer at both stages.

6.2.3.1 Simulink model

Figure 6.16 shows the system part of the Simulink model. We have added an ana-
logue beamformer (A-BF) after the RF fontend and before the ADC. Both the ana-
logue beamformer and the digital beamformer (D-BF) are phase shift based. Fur-
thermore, we have added a beamsteerer based on a LPT below both beamforming
stages (A-BS and D-BS). The beamcontrol block (BC) was changed to A-CMA and
the steering angle (theta) is used as input to the beamsteerers. As such, the steering
angle is converted to the analogue domain for the analogue stage using an DAC.

167

168

Systemn
Front-end Processing

—m| i o[if— s
J v d Pin ot 5
" v 7] date
Fix; FRiF w
A-BF ADC AF

D-BF Sinks

theta. w e, w
A-BS D-B5
d

DAC tetn,

FIGURE 6.16: Simulink hierarchical beamformer model

The rest of the model is the same as for the adaptive beamformer, i.e. a QPSK
modulated source signal and time delays for the channel are used.

6.2.3.2 UNITI model

The Un1T1 model of the analogue front-ends and the digital processing is shown in
figure 6.17. As can be seen, the model is more complicated than before because
of a double feedback loop from the A-CMA block. It is again the same as the
Simulink model, except that some of the names are changed and the blocks are
slightly rearranged in position to match with the definitions below. The model of
the environment is the same as for the adaptive beamformer.

We will start with the definition of the digital processing part:

processing = (|| ap) > (O G)
with G of the form

G- (%,0) = (1.0, 0)
where
0~ Ipt>w

@) > ((@bfa) N []) & rre) =y
(%.7) = (acma i 65) > 6'

The processing component is comparable with the E-CMA version of the adaptive
beamformer. The differences, besides the beamcontrol algorithm, are that a LPT
is used to determine the steering vector w from the steering angle 0, and that the
steering vector from acma is duplicated; the outer one is for the feedback loop
to the digital beamformer and the other one is an extra output of the processing
component.

Analogue frontend

Digital processing

System

FIGURE 6.17: UNITI hierarchical beamformer model

The definition of the system follows as:
system= O ((||* frontend) > processing) > (||* snk)

The processing component now outputs a beamformed signal as well as a steering
angle from A-CMA. This steering angle is fed back to the analogue beamformer as
extrainputto each frontend (in a hierarchical beamforming the first stage consists
of multiple sub-arrays, see section 2.3.4).

It is still ongoing research how to combine a feedback loop in the CT domain
with state, as discussed in section 5.4.3.3. Without state, the feedback loop must
be re-computed from initial situation at time ¢ = 0 until the simulation time ¢ for
each simulation step. To provide a fairer comparison we have therefore moved the
“analogue” beamforming stage to behind the ADC, thereby allowing state. Each
frontend is therefore defined as:

frontend = ((||* (rx > rf > adc)) || Ipt) > bf

The sequence of components is similar to the frontend as defined for the simple
beamformer. However, now there is a parallel composition of rx, r f and adc for
each antenna from the sub-array, and this composition is in parallel with an LPT
(Ipt) and followed by a beamformer (bf).

6.2.3.3 Comparison

A simulation is performed with 4-elements for the first stage and 8-elements for
the second stage. Therefore, the total number of antennas is 32, as it was for the
adaptive beamformer. Also the same simulation scenarios is used, i.e. the source
has a DoA that changes in a sine wave motion from 0° to 30° azimuth and back.

The output of the A-CMA algorithm (the steering angle) of the UN1T1 model is
plotted over time in figure 6.13. The DoA of the source is shown in dark grey and
the steering angle from A-CMA is shown in light grey. As can be seen, A-CMA
correctly follows the DoA but slightly lags behind.

169

170

The execution times of a simulation from 0 us to 100 s averaged over 5 sim-
ulations are shown in table 6.3. Note that A-CMA is a more complex algorithm
than E-CMA. As a consequence execution times are longer for all simulations, es-
pecially for the interpreted Simulink simulation with time delays and the UN1TI
simulations. UNITI has also become slower than the Simulink simulation with
phase shifts. We expect this is the case because the UN1T1 model uses a naive imple-
mentation of matrix multiplication, while Simulink is highly optimised for matrix
operations. Nevertheless, UNITI still offers a model using exact time delays at a
reasonable increase in execution time (only 4 % for the compiled versions), and is
much faster than the Simulink model using time delays (about 46 times for the
interpreted version and 6 times for the compiled version).

TABLE 6.3: Hierarchical beamformer execution times

Interpreted Compiled

Simulink with time delays 2455.014s 78.502s
Simulink with phase shifts 29.142s 11.954s
Unr1Ti 53.390s 12.425s

6.3 PARTITIONING

In chapter 3 we found that beamforming is the most computationally intensive
part of the system and that it therefore must be partitioned over multiple cores.
Figure 6.18 illustrates this transformation. Beamcontrol processing is performed
far less often (about 1 x 10° times less often for the DVB-S case, i.e. 50 MS/s versus
50 Hz array dynamics), so we expect that beamcontrol processing is performed on
a single tile as there is enough time for computation and communication (for low
cost algorithms such as E-CMA and A-CMA).

In section 2.3.4 we discussed hierarchical beamforming; beamforming is per-
formed in multiple stages while the beamsteer correction is distributed over the
stages. This approach is thus very suitable to partition the beamforming operation.

In section 5.5 we defined exactly such a model transformation, a divide-and-
conquer approach which distributes a distributive operation over a reduction op-
eration. In case of PS based beamforming, beamforming is defined as the dot-
product of the antenna signals (X) with a correction vector w (see above). Thus, the
distributive operation is a complex multiplication (with the steering vector weight)
and the reduction operation is a sum.

A nice property of this model transformation is that each part in the partition-
ing performs the same functionality. The transformation on the beamformer is
then defined as:

distribute, (bf (w,X))

with the definition of distribute from section 5.5. Note that this definition is in-
dependent of the number of antenna elements. All antenna signals and steering

source

= RF |[HE.A7D [HE AP BF~ :

FIGURE 6.18: Partitioning

weights are split into parts of size n resulting in m sub-vectors. These m parts are
beamformed with the first element of the sub-vector as reference, so the steering
vector weights are normalised to the first element. The results of these beamform-
ers are then recursively split into parts and beamformed in turn, with as weight
vector the weights of the first elements of the sub-vectors. As here bf is a DF com-
ponent, the result is a number of b f components for beamforming the sub-vectors
and the later stages.

6.3.1 Granularity

As the partitioning of the beamformer is now parameterised over the number of
elements (1) to beamform per part, the next step is to determine a suitable n. This
is achieved by assigning costs to computation and communication for the target
architecture. The cost can for example represent the price, the energy efficiency
or maintainability, i.e. some combination of non-functional requirements, and is
very dependent on the application and the specific situation. As an example, we will
base the cost on resource usage in terms of number of clock cycles for computation
and number of connections for communication; multiplication has a cost of 10 and
addition has a cost of 1, the communication cost is equal to the number of inputs
and outputs of the component.

Single tile Suppose a beamforming system with 64 antenna signals as input and
a single beam as output is partitioned. The simplest architecture consists of a single
tile, i.e. no partitioning is performed. For a single tile architecture, the computation
cost is 63 * 10 + 63 * 1 = 693 and a communication cost of 64 + 1 = 65.

171

172

TABLE 6.4: Partitioning cost

Single tile Fully partitioned Constrained

Computation cost 693 693 693
Communication cost 65 189 105
Tiles 1 64 21
Computation cost per tile 703 11 33
Communication cost per tile 65 3 5

Fully partitioned A single tiled architecture is not very scalable and is probably
not feasible, so we want to distribute the beamforming over multiple tiles. The
other extreme is a fully partitioned beamformer, i.e. two antenna elements are
beamformed per part. As for each part the weight vector is normalised, one of the
weights becomes 1 removing the need for a multiplier for that weight. Each 2-input
beamformer thus consists of a single multiplication and addition. Each tile has a
computation cost of 10 +1 and a communication cost of 2 +1, totalling 63 * 11 = 693
and 63 * 3 = 189.

Constrained A more realistic example has constraints for the partitioning set by
the architecture, i.e. a tile has a maximum of computation and communication
resources. Assume we constrain each tile to a computation capacity of 40 and a
communication capacity of 6, this would allow for beamforming of four inputs
with a computation cost of 3 * 11 = 33 and a communication cost of 4 + 1 = 5. The
function distribute with n = 4 and 64 inputs then results in 21 tiles, 16 for the first
stage, 4 for the second stage and 1 for the final stage, totalling 21 * 33 = 693 and
21 % 5 =105.

Evaluation The three different partitionings are summarised in table 6.4. As ex-
pected, the computation cost stays the same, but the communication cost increases
with a smaller granularity (larger number of parts). Of course, a smaller granularity
lowers the computation and communication cost per tile as it is one of the reasons
for partitioning (the other being parallelisation).

Using a model transformation for partitioning allows us to quickly evaluate
different granularities for partitioning. Moreover, this is possible anytime during
development. Evaluating even these three options in Simulink is very cumbersome
as it requires one to draw each tile of the solutions, because they are not easily cap-
tured in block-diagrams. With the distribution function, we can transform the
solution from one with a single tile (with n = 64), to one with many tiles (with
n = 2) or anything in between and for any number of antenna inputs. This trans-
formation is simply not possible in Simulink.

FIGURE 6.19: 16 antenna beamformer FIGURE 6.20: 23 antenna beamformer

6.3.2 E-CMA on a tiled architecture

Returning to our case study, consider the adaptive beamformer with the E-CMA
beamcontroller is to be partitioned for a tiled architecture. The beamformer is
intended for the DVB-S application, so the data rate is 50 MS/s.

Assuming the tiled architecture presented in section 3.3.3, which consists of
tiles which can process 200 M ops and a 400 MB/s NoC, we find that we can beam-
form 4 antenna signals per tile. For 16 antennas this results in a hierarchical beam-
former with 5 (DF) processes (shown in figure 6.19) and thus 5 tiles. For 23 an-
tennas the beamformer consists of 9 processes, shown in figure 6.20, which for
example matches a 3x3 grid of tiles well, leaving some processing capacity for the
beamcontrol calculations. Both of these partitionings are generated automatically
using the distribute transformation with # the partitioning granularity (the num-
ber of elements per part), only the number of the antennas are changed. We found
in section 2.3.1 that 256 antennas is a feasible array for the DVB-S application, re-
quiring 85 tiles on this architecture.

For the case study, we experiment with an existing realised platform, the LEON
SoC platform presented in section 3.3.2. The LEON SoC platform consists of
three MoNTIUM processors and a NoC. Each MoNTIuM has 5 ALUs and runs at
15.84 MHz on the FPGA prototype realisation, however, we expect an ASIC reali-
sation to run at about 200 MHz. Each ALU has three levels; the first level can com-
pute four additions, subtractions or logic operations, the second level can compute
a MAC operation, and the third can perform a butterfly operation. See appendix B
for an overview of the MoNTIUM architecture. The MONTIUM can perform one
complex multiplication per cycle, so 4 antenna signals can be beamformed per pro-
cessor (tile). With three tiles and 4 inputs per tile the maximum array size is 8; the
first stage is performed on two MONTIUMs (4 elements each) and the second stage
on the third MoNTIUM (leaving some computation capacity for e.g. beamcontrol
processing). This is by far not sufficient for the DVB-S application.

173

174

6.4 MAPPING

During the mapping phase the parts of the partitioned application are assigned to
tiles on the tiled architecture. We have partitioned the beamforming to use the max-
imum computation and communication capacity possible in order to reduce the
data rate as soon as possible. The mapping is therefore relatively straightforward,;
as each part is partitioned to use the maximum resource capacity of a tile, each part
is assigned to its own tile. For more dynamic automated run-time mapping in case
of multiple changing applications on a tiled architecture see [45, 97].

For the mapping and implementation step, we will continue with the adaptive
beamformer case for the DVB-S application on the LEON SoC platform. Besides
the beamformer and beamcontroller, a RRC matched filter for QPSK modulated
signals is included as the cost function of E-CMA is based on the QPSK modulation
points. The input data for the beamformer is generated by the UNITI model.

The LEON SoC can only perform beamforming for an 8-element array, as there
are only three MoNTIUMS available and we also need to compute the second stage
and E-CMA on the third MoNnTiUM. In addition, the matched filter must also be
computed. With only four clock cycles per sample, this must also be performed
on dedicated tiles, which are not available on the LEON SoC. Therefore, the beam-
forming operation and the filtering are time division multiplexed, i.e. the opera-
tions are alternated during execution. This further reduces the input data rate of
the beamforming application supported on the platform. Nevertheless, we will use
this platform for mapping and implementation as proof of concept and to evaluate
an actual implementation on prototype hardware.

6.4.1 Assignment of kernels

The processing of the adaptive beamformer is partitioned to processing kernels and
encapsulated as DF processes. Next, these processes are assigned to tiles.

Beamformer The beamformer was partitioned into three DF processes in the
previous section. The two processes of the first stage are mapped on two dedi-
cated MONTIUMS, requiring 4 clock cycles for the 4 inputs each. The second stage
beamforms only the two results from the first stage, requiring 1 clock cycle. This is
mapped to the third MoNTIUM.

Baseband processing The baseband processing (matched filter) uses a separate
filter for the real and imaginary parts of the complex signal resulting from the beam-
former. Each filter is implemented as a process on a separate MONTIUM perform-
ing a 25-taps RRC FIR filter. The filter is executed after the beamformer for each
beamformed sample. An N-taps FIR filter can be mapped on the MoNTIUM in N/5
clock cycles [44]. Hence, each of the two filters can be executed by a MONTIUM in
25/5 =5 clock cycles.

Monrtium 1{ Beamforming Matched filter ‘ I N
MonTIUM 2 BF Extended CMA (E-CMA)

MonTiuM 3{ Beamforming Matched filter ‘ [T w update

o'1'2'3"4"5" 67 8 910 "2 131415 1617 1819 20 21 2223 24" 25 26 27 28 29 30"

w update

FIGURE 6.21: Scheduling of the processing blocks on 3 MONTIUMS

Beamcontrol E-CMA isused for beamcontrol processing and includes the beam-

steerer. E-CMA is more complex than the beamforming operation, but as we have

already mentioned, it is computed less often. We have verified that the update rate

of E-CMA can be decreased a few hundred times in relation to the sample rate be-

fore symbol errors start to occur and the algorithm becomes unstable. Therefore
1

we will use an update rate of p = 5= = 0.004 of the antenna sample rate. As it is

computed much less often, we can map the beamcontrol processing to a single tile.

6.4.2 Scheduling

The scheduling of the beamformer and the matched filter is shown in light grey in
figure 6.21. For each signal vector from the antennas the processing takes 10 clock
cycles on the MONTIUM. After executing the beamforming operation 250 times E-
CMA is executed. The execution of E-CMA is illustrated in dark grey in figure 6.21.
As we will find out below, the implementation of E-CMA requires 21 clock cycles,
while updating the steering vector requires another 4 clock cycles (w; 4 is calcu-
lated by one MonTIUM while the other calculates ws_5). Since the MoNTIUMS
communicate via the NoC which is clocked at a 3 times higher frequency, the out-
put sent from one MONTIUM to the next is already available at the next MONTIUM
clock cycle. Therefore, communication does not introduce latency in the schedule.

The schedule shows the utilisation of the MONTIUMs is not optimal. Although
the schedule could be improved, the main problem is a dependence of the matched
filter on the beamformer in combination with a small number of tiles, and the
limited amount of computations in the second stage. Pipelining the beamformer
and the matched filter would, in the case of consecutive beamforming operations,
reduce the number of free slots from 11 to 8 (the matched filter is moved 1 slot to
the left in figure 6.21). E-CMA can be pipelined; it is started after the first clock
cycle of the matched filter. This is possible because the last 5 taps of the FIR filter
are calculated first, such that the filter output can be obtained after one clock cycle
already. In the remaining 4 cycles, the other 20 filter taps are processed. However,
as E-CMA is only executed once every 250 samples and as the rest of E-CMA can
not be parallelised further (we will find below that an iterative algorithm is used),
this has a limited effect.

175

176

NTIUM 1 MONTIUM 2

MONTIUM 3

FIGURE 6.22: Mapping of the beamforming operation performed by 3 MONTIUMS

6.5 IMPLEMENTATION

We have implemented the adaptive beamformer on a FPGA prototype realisation
of the LEON SoC platform (section 3.3.2). Because the MONTIUM processors on
the LEON SoC platform only operate at 15.84 MHz, the sample rate of the antenna
signals is lowered to 1.5 MS/s (complex).

Ideally code generation would take the definitions of the functionality of each
DF process to generate an implementation for each of the cores of the tiled archi-
tecture. With code generation as a model transformation (i.e. the compiler is the
model transformation), this would give us the means to verify that the implemen-
tation is correct and to perform design space exploration with different implemen-
tations (i.e. for different kind of processors on a heterogeneous platform). Unfortu-
nately such a model transformation is not developed and developing it is complex
and might not even be possible for e.g. the MONTIUM, so instead we will provide a
manually generated implementation of the beamforming, matched filter and beam-
control operations [95].

6.5.1 Beamformer

The beamforming operation requires one complex multiplication and one addition
per beam per sample per antenna. A complex multiplication on the MONTIUM is
implemented using four of the five MAC units at level 2 of the ALUs. Level 3 of the
ALUs is used for the addition. The final mapping is shown in figure 6.22. Scaling
of the input signals is used at each stage so that the dynamic range at the output is
the same as at the inputs.

wt] > wt+1]

FIGURE 6.23: Block diagram of E-CMA

6.5.2 Baseband processing

The matched filter is implemented using two 25-taps FIR filters for the real and
imaginary parts of the beamformer output. A FIR filter tap maps directly on the
level 2 MAC unit. Therefore with 5 ALUs 5 filter taps are calculated in one clock
cycle, which is performed 5 times for the matched filter.

6.5.3 Beamcontrol

The beamcontrol algorithm is more difficult to implement on the MoNTIUM. We
give a summary of the implementation presented in [95, 104]. The formula for
E-CMA is repeated here (with discrete inputs x):

2- (Ll = 1y[AF) - - (sin (4- 2 y[¢]))
ylt]

A block-diagram representation is shown in figure 6.23. Note that the complicated
part of the equation only consists of scalar operations.

We are using the 1.15 fixed-point arithmetic modus of the MoNTIUM for the im-
plementation of E-CMA, meaning values are in the range of [0 . . . 1) and need to be
scaled at various places in the algorithm. Scaling is implemented efficiently using
the level 1 shifters of the ALUs, limiting the scaling to powers of two, however. As
the QPSK signal has a magnitude around 1 which can become larger than 1 because
of noise, the input signals are scaled by a factor 1/2 (otherwise magnitudes larger
than 1 are saturated causing problems for E-CMA as the gain can not converge
to 1). The results of both |u|” and u? are scaled by a factor 2 to include the input
scaling into the E-CMA algorithm. As the angle ranges from -7 to 7, it is scaled

wlt+1]=w[t] - u- - X[t]

177

178

by 7 for both the arc-tangent used for < u as the sin(#) computation. This maps
the angle from [-7...7) to [-1...1) matching 115 fixed-point values and thereby
allowing overflowing of the angle values. Furthermore, analysis of the weights of

the steering vector 147] show that their value can go up to about 6. Therefore, the
normalisation factor 4; of the beamforming operation is applied to all the weights
of w to keep their magnitude smaller than 1 (giving the same results as applying

the factor to the beamformer output).

Most operations can be implemented on the MoNTIUM ALUs directly, except
for the coordinate transform operations (Ju| and < u, for which we use the coordi-
nate rotation digital computer (CORDIC) algorithm), the sine computation, and
the complex division (for which we use lookup tables). For completeness, these
implementations are presented in appendix B. Of those operations, the sine com-
putation has a limited accuracy of 10 bit because it uses a lookup table (LUT). For
E-CMA with QPSK modulation, this is accurate enough as the constellation points
are 45° apart. For a larger number of phase constellation points the accuracy may
no longer be acceptable and a larger memory or a CORDIC implementation must
be used. Furthermore, the complex division requires a scale factor so that the di-
vision does not saturate for the MoNTIUM’s fixed-point representation. Therefore,
the multiplication with y (0.05) and the scaling of the weight vector (1/s) are used
as a scale factor. For this scale factor, the complex division saturates if [¥| < 0.08
(see appendix B). As for E-CMA the denominator v equals y and since E-CMA is
used to steer |y| to 0.5, the probability of a lookup of one of these saturated values
is very low.

The total number of clock cycles required is 21: 16 for the CORDIC algorithm,
2 for the complex multiplication, and 3 for the rest of the operations. The scalar
result is sent to the other 2 MoNTIUMS, used by each to update half of the steering
vector. The update consists of a complex multiplication and addition using 1 clock
cycle per weight and implemented using level 2 of the ALUs.

6.6 RESULTS

A system design for a generic beamforming platform was developed using the
UNITI design flow. Starting with a simple beamformer, which was extended with
adaptive beamforming and hierarchical beamforming, the design was developed
from specification to partitioning. The adaptive beamformer was further devel-
oped all the way to implementation on a tiled architecture. The specification was
divided into sub-components during the co-design phase, after which it was com-
pared with Simulink. Next, the beamformer was partitioned over multiple tiles.
During these model-based design steps a single model was developed and refined
using the domains and model transformations provided by Un1TI. Next, a manual
mapping and implementation of the adaptive beamformer on the LEON SoC plat-
form was presented. In this section we will evaluate UN1T1 and present the results
of adaptive beamforming on the LEON SoC platform.

FP System FP Plot

FP Dataflow
feyele 125

un A
= Y o0) 0agh)

Pra SN FP Radiation pattern
0.

{

Uom) e v
cra

s
e’ oes
s

&

FIGURE 6.24: Framework

6.6.1 UNITI

The main evaluation criteria for UNITI are the effectiveness and usefulness of the
approach. As such criteria are difficult to quantify objectively, we will present the
applicability and flexibility of UN1T1 for the phased array beamforming case study,
in order to provide an indication.

6.6.1.1 Applicability

Figure 6.24 shows a screenshot of the complete framework during the simulation
of the beamforming case study with a 5x5 array, a 30° steering direction and two
sources, one of which is filtered away. It shows the results of a simulation of the
CT, DT and DF domains in a single model, including structural hierarchy in the
system overview and the processes during execution of the DF model. The model
is executed for simulation, allowing step by step evaluation of the behaviour of the
system. Additionally a radiation pattern shows the current steering direction of
the beamcontroller.

Performance The model shown in figure 6.24 is the same model as used for
the simple beamformer during the co-design step. We have already shown that
the Un1T1 model is at least as computationally efficient as an equivalent Simulink
model (and 3 times faster for the compiled version), while providing exact simula-
tion of the environment. To increase the accuracy of the Simulink model, the time
step must be reduced making it even less efficient as the model is evaluated more
often than the UNITI model. As a result, UNITI is much more computationally
efficient for the adaptive and hierarchical beamformer than a Simulink model us-

179

)
) ()
N

/

) CHAPTER 6. CASE STUDY (%)
N)

Time (s) Memory (MB)

0.4 1000
»
0.3 750 4
W £ 8
0.2 500 a -1
0.1 250 o
0 0 _—l—ﬂ-‘-_m_
3x3 5x5 11x11 3x3 5x5 11x11
2 4000
15 - 3000 +
2 2003 IS
1 2000 2 &
05 —Biea - 1000 § 2
: W 0.68 0.72 . EmE g
s BN BN 0 o7 | 177]
3x3 5x5 11x11 3x3 5x5 11x11
15.0 6000

113 4500 2003
[] .
7.5 3000
3.8 1500 . H
0 0 230

3x3 5x5 11x11 3x3 5x5 11x11

Ppow
mopere(+

W Framework B GUI Semantic model
B Radiation pattern M Dataflow model

FIGURE 6.25: Profiling results (time (s) and memory (MB)) for the simple beamformer case
study on a 2 GHz Core 2 Duo with 4 GB RAM.

ing time delays. It is also more efficient than a Simulink model implemented with
phase shifts and using the same time step for the adaptive beamformer case. For
the hierarchical beamformer, the execution time of UN1TI is about twice as long
and the compiled version takes about 5% longer than the Simulink model with
phase shifts. However, in these cases UNITI still has the advantage of supporting
exact time delays.

Profiling results for an increasing number of antennas (3x3, 5x5 and 11x11 ar-
rays) are shown in figure 6.25. The top two graphs show the results of only the CT
and DT version of the model (with the beamformer in the DT domain). The next
two graphs include the radiation pattern, which is computationally expensive. The
final two also include the dataflow model (by lifting the beamformer function to a
DF component), including the visualisation of the DF processes. We can see that
the memory requirements grow faster with more antennas than the processing re-
quirements. This limits the simulation to a few hundred antennas for a 2GHz Core2
Duo with 4GB RAM. Further, the radiation pattern calculation becomes dominat-
ing with larger arrays. Note that the instantiation of the wxWidgets toolkit for the
graphical user interface (GUI) has a relatively large but fixed processing overhead
compared to the model. With the dataflow model the GUI becomes dominating
and is also dependent on the array size. This is because of the redrawing of the
Bezier curves and the channel contents of the dataflow model during simulation,
which uses a naive implementation and is therefore the first candidate for optimi-
sation. As the framework was developed as a proof of concept, we expect there is
ample room for improvement in efficiency.

TABLE 6.5: Code size [lines]

Framework Case

Support 811
GUI 411
System model 141 438
Radiation pattern 10 46
Dataflow model 1143 135
Total 2516 619

Designer productivity Designers can efficiently and easily extend a model with
more detail by just a few lines of code, as we have seen for the three beamforming
cases during co-design. For example, we exchange the simple sine source from the
simple beamformer with a QPSK modulated source in the DT domain or we add
an analogue beamformer for the hierarchical beamformer. Much of the design flow
is automated by the framework, i.e. multi-domain composition, communication
and synchronisation for a DF model and model transformations. Table 6.5 shows
the code size in lines. We see that the framework is 2500 lines, half of which is of
the dataflow support. The case is about 600 lines, with the majority in the system
model as this implements the functionality of the system and is re-used for the
dataflow model. A large part of the code (the framework) is thus re-useable, pro-
viding the glue-logic. The additional code needed because of the design framework
is very little, about 5 %.

It is difficult to estimate and compare the development time of the case study, as
it was used to develop to the framework. The graphical representation of Simulink
is more intuitive when developing the initial model. However, with equal knowl-
edge of the tools, we expect the UNITI approach to be more productive because
the higher abstraction level of the implementation improves flexibility (see below)
making adjustments easier. Furthermore, changes are checked by the type system
and transformations are defined to be correctness preserving.

6.6.1.2 Flexibility

The presented design flow of UN1Tr and the guidelines for specifying the algorithm
using aggregate operations aim at increasing the flexibility. For example, the num-
ber of sources or antenna elements and their positions can be changed without the
need to change the model, and higher-order model transformations are used for
automated partitioning. This enables us to quickly evaluate design alternatives.

Automation Composition, simulation and multi-domain integration are auto-
matically provided by the framework. Implementing the functionality is of course
manual. Design decisions for dividing functionality over domains and specifying
the algorithm so it can be partitioned effectively are also the designer’s responsibil-
ity. Still, lifting functions to operate on multiple elements, and partitioning using
data and control parallelism with such aggregate structures is automated.

181

182

Scalability Specifying the algorithm at a higher abstraction level makes it inde-
pendent from the number of elements and enables automated model transforma-
tions, thereby improving the scalability of the design. The framework itself (for
our case) scales linearly in performance with the number of antennas as shown in
figure 6.25.

6.6.2 Adaptive beamforming on the LEON SoC platform

As explained, model transformations for automated mapping and code generation
are not integrated or available for UNITI (yet). Therefore the adaptive beamformer
was mapped and implemented on the LEON SoC manually.

6.6.2.1 Applicability

For simulation and verification, a comparable synthetic scenario is used as in sec-
tion 2.4.2. A ULA is mounted on a moving vehicle, driving towards the source at
72km/h. When driving, the vehicle is moving to the left and right with respects to
the source in a sine wave motion with an amplitude of 30°, i.e. 60° peak-to-peak,
and at 100 Hz. A QPSK modulated source is used with random data and signals are
generated for each antenna by the UN1TI model. These antenna signals are beam-
formed and tracked by E-CMA.

The results are verified by analysing the E-CMA cost function over time (see
section 2.4.2), by plotting the constellation points of the the output signal and by
comparing the demodulated output data with the input data. Figure 6.26 shows the
E-CMA cost function Jp_cpa (section 2.4.2). The costs vary between 0.08 and 0.2,
corresponding to a maximum amplitude error of 1/0.20 ~0.45 and a maximum
phase error of arcsin (\/ 0.20) ~27°. In practice the error will consist of both an
amplitude and phase error and each individual error will therefore be smaller. Nev-
ertheless, 27° is well within the 45° separation of the constellation points. As shown
in figure 6.27, the constellation points are still clearly distinguishable. Indeed, after
demodulation, the output data is equal to the input data for the simulation times
we used.

When compared to the simulation in section 2.4.2, the limited 16 bit word-
width of the MONTIUM increases the cost and spreading of the constellation points
significantly. However, the results are still good enough for robust and proper track-
ing of DVB-S signals with rather extreme worst-case vehicle dynamics.

Performance The 8-element beamformer with a matched filter and E-CMA were
mapped on three MONTIUMs. Beamforming requires 5 clock cycles on the Mon-
TIUMS, utilising 9 of the 15 slots (with one slot being a single clock cycle on one
MoNTIUM, see figure 6.21). The low utilisation is caused by the limited work for
the third MonTIUM, Which will improve for larger arrays. The matched filter re-
quires 5 clock cycles, utilising 10 of the 15 slots. E-CMA requires 21 clock cycles
for computing the correction factor (the scalar part) and another 4 clock cycles
on two MoNTIUMs for updating the steering vector, utilising 29 of the 75 slots. E-

CMAext costs

e

0 0.005 0.01 0.015 0.02 0.025
time

FIGURE 6.27: Constellation diagram of the

FIGURE 6.26: E-CMA cost function over time .
adaptive beamformer output

CMA is partly pipelined with the matched filter improving utilisation with 8 slots.
Improving utilisation further is of low priority, however, as E-CMA is only exe-
cuted once every 250 samples or 2500 clock cycles. For both the beamformer and
the matched filter, meaning most of the time, only level 2 of the MonTIUM ALUs is
used. So utilisation of the MoNTIUM itself could also be better; for those operations
a simpler tile could be used. On the other hand, the beamcontrol algorithm has a
better utilisation of the MoNTIUM ALUs and requires the additional flexibility of
the MoNTIUM, which pleads for a more heterogeneous tiled architecture.

The memory requirements for the MONTIUM are 1024 16 bit words for each the
sine and complex division LUTs, and 16 16 bit words for the arc-tangent LUT. This
is about 20 % of the available memory.

Designer productivity The manual implementation for the MONTIUM is rela-
tively complex because of the MoNTIUM’s many functional units, the signal paths
between the units, and the dependencies between them. It is therefore relatively
time-consuming and error-prone. Being able to generate input signals for the
Monriums with UNITI and to verify the results against it, is helpful for the im-
plementation step. The UNITI model does not use fixed point data, therefore, it
will be useful to implement support for fixed-point data in Un1T1.

6.6.2.2 Flexibility

The LEON SoC platform consists of reconfigurable processors and a reconfigurable
NoGC, so it is very flexible. This flexibility is intended to be used to switch between
different scenarios such as between searching using a spatial reference algorithm
(section 2.4.1) and tracking using a blind reference algorithm, the latter of which
we have implemented.

183

184

Automation Unfortunately, both the mapping and implementation are a manual
process for the LEON SoC. The MonTIiuM and the NoC do automate the manage-
ment of data streams after configuration, i.e the MONTIUM is stalled automatically
until new data arrives [104].

Scalability Because of the applied partitioning of the beamformer, the implemen-
tation scales well with the number of antennas; additional MoNnTIUM tiles need to
be added, but their functionality remains the same. The matched filter operates
on the output of the beamformer and has a fixed complexity, so it will become
smaller compared to the beamformer for increasing number of antennas, and the
current mapping will suffice. The beamcontrol algorithm is more complex, but
the correction factor is a scalar operation with a fixed complexity and its result is
then distributed over the tiles to update the steering vector. As the same input data
is used for beamforming and for updating the steering vector, this nicely exploits
locality-of-reference and scales well with the number of antennas. Scaling is only
limited by the need to distribute the correction factor from a single point to the
rest of the tiled architecture. However, as E-CMA has limited complexity and is
not executed often, it can easily be duplicated for a better distribution.

6.7 CONCLUSION

In this chapter we have applied the UN1T1 design flow and framework presented
in chapters 4 and 5 to the design of a generic beamforming platform as presented
in chapter 2 using a tiled architecture as presented in chapter 3. This case study is
presented in three parts; first a simple beamformer is developed which focuses on
modelling the environment. Next, the design is extended into an adaptive beam-
former based on E-CMA for the beamcontrol algorithm, and includes feedback
and state. Finally, the design is extended to a hierarchical beamformer with multi-
stage beamforming in the analogue and digital domain and A-CMA for beamcon-
trol.

In the first step the specification of the case study is presented. The definitions
are very similar to the mathematical equation from chapter 2, however, at the same
time their implementation in Haskell is straightforward. As a consequence, the
specification is executable. This is applied to verify the specification with plots of
the beamformer output and the radiation patterns expected from the E-CMA and
A-CMA algorithms.

The next step is co-design; the equations from the specification are used to
define components representing the environment, the architecture and the appli-
cation. The composition operators are used to combine components and for struc-
tural hierarchy. Furthermore, the environment and the analogue front-ends are
represented in the CT domain, while the AP is represented in the DT domain and
the beamforming and beamcontrol in the DF domain. The model is gradually de-
veloped by adding QPSK modulated source signals with an RRC filter with state,
and E-CMA for adaptive beamcontrol using feedback, followed by A-CMA and

a second feedback loop. The UN1T1 models during this design step are compared
with equivalent Simulink models. For the same simulation step sizes, the execu-
tion time is at least about the same or up to 3 times less in UNITI in the cases pre-
sented. However, even with the same execution time, we always gain accuracy with
UNITE the result of the UNITI simulations are exact, whereas Simulink introduces
inaccuracies. For example, in the DVB-S case, reducing the simulation step size in
Simulink with a factor 10 gives an acceptable accuracy of 3 % (30 dB SNR). In UN1Tr
the accuracy is limited by the machine precision of about 1 x 107'* % (300 dB SNR).
With a 10 times smaller step size in Simulink, UNITI is up to forty times faster.

During the partitioning step, different partitionings of the beamformer are ex-
plored using a model transformation that exploits the associativity of addition and
the distributivity of multiplication. As the beamcontrol algorithm is only executed
once every few hundred samples it is not partitioned.

The mapping step assigns the processing components of the adaptive beam-
former to tiles on a tiled architecture with three reconfigurable processors that is
realised on an FPGA. Because of the small number of tiles, only an 8-element beam-
former can be mapped, yet it verifies the scalability of the beamforming application
on a tiled architecture with an implementation.

The implementation requires four clock cycles for beamforming and five clock
cycles for baseband processing on two of the processors. The third processor per-
forms a final addition and once every 1000 clock cycles the beamcontrol algorithm
is executed, taking 24 clock cycles. Since only four clock cycles are available per
sample, the implementation must be further partitioned for real-time operation.

The results verify that the Un1T1 design flow and framework can be successfully
applied up to the mapping and implementation step for the design of a generic
beamforming platform. The performance of the framework limits simulations to a
few hundred antennas because of memory requirements, but the approach is flex-
ible and expected to be more productive. The mapping and implementation are
limited by the small number of tiles on available tiled architectures. Furthermore,
the implementation takes a lot of effort. On the other hand, the implementation
does provide scalability and is able to successfully execute an adaptive beamform-
ing application.

185

CHAPTER

Conclusions

In this thesis we set out to advance the design of embedded systems using a model-
based design approach. Looking at the trends, such an approach is considered
crucial to deal with the increasing complexity of designing embedded systems. In
particular we have considered a larger application on a many-core architecture,
leading us to touch upon many of the trends such as requiring the modelling of
multiple-domains, the inclusion of time in the model, and the need for an adaptive
and flexible system that is also efficient.

We conclude that the design of future embedded systems requires support to
deal with their complexity by dividing the problem into subproblems, yet at the
same time requires support to integrate the various aspects of those subproblems.
This integration is needed to ensure correct operations of the final design as well
as to improve collaboration and interaction between different parts of the design.

Model-based design provides such an approach by modelling multiple domains
in a single model and by using model transformations. We specifically considered
the combination of the CT and DT domains with the DF domain. The CT domain
is used to model the environment of a system and the analogue hardware, the DT
domain is used to model the digital hardware, and the DF domain is used to model
the software. We have found few tools supporting all these domains. Even fewer
support model transformations or mathematical definitions of model components
to assist model transformations. Furthermore, we have found no tools supporting
the exact simulation of models with time transformations, such as time delays, or
supporting separate notions of time such as simulation time, approximation time
and local time. These features are important to accurately model the environment.

The Uni1T1 design flow and modelling and simulation framework does support
these aspects. UNITI provides a unified perspective on time, signal and compo-
nents in multi-domain models, consisting of CT, DT and DF components. In all
domains components represent signal transformations, yet the representation of
signals differ. CT signals are represented by functions of time in order to support

188

time transformations. This is possible because components can change the time ref-
erence of the CT signal before the function is applied to a time, thereby enabling
exact simulation of models containing such time transformations. DT signals are
represented as values, i.e from the perspective of the DT component the input is a
single value. Although this value can change over time, the DT component is not
able to influence this time nor should it be able to. DF signals are represented as
a list of tokens representing an update to an input channel of a dataflow process.
This differs from the standard representation of dataflow models, however, this is
required to unify the DF domain with the signal representation of a time-varying
quantity as in the CT and DT domains. As a consequence, DF components take
care of managing the contents of channels and the firing of processes. In a Un1T1
model, DF components are embedded into DT components and DT components
are embedded into CT components for integrated multi-domain modelling. Fur-
thermore, components are defined using mathematical definitions. Mathematical
definitions facilitate model transformation by exploiting mathematical properties
such as distributivity and associativity, as well as preserving correctness.

We have identified several notions of time in such models: the simulation time
(of the model), the sample time (e.g. of an ADC), the approximation time (e.g. of
an integration), the execution time (e.g. of a dataflow process), and the local time
(e.g. for a time delay). In UN1T1 these notions are separated, allowing the local time
of an input CT signal to be different from the local time of an output CT signal to
implement e.g. a time delay. These notions of time do not have to match with
the simulation time, e.g. the simulation time is automatically changed to the latest
sample time, locally at the ADC component. Components that deal with changes
over time, such as integration or differentiation, in the general case need a solver. In
all current tools, this solver is global and uses a global approximation time step. In
UniT1a solver islocally applied for the component, enabling the designer to choose
a specific solver and its approximation time step, for each component individually.

Embedded systems interact with their environment, and many embedded sys-
tems perform signal processing on streaming data from the environment. As an
example application, we have discussed the application domain of phased array
beamforming applications. Beamforming is a relatively large application, in that it
is not able to run on a single processor. Phased array systems are typically used in
applications such as radar and radio astronomy. High costs have withheld their use
for consumer applications, such as satellite reception and wireless communications.
Therefore we have presented a generic beamforming platform that could enable
such systems for consumer applications by economies of scale. However, between
beamforming applications (satellite reception, radar, radio astronomy, and wireless
communications) there are large differences, especially in the required array size.
Thus, a generic platform must be modular, scalable and flexible to support mul-
tiple applications. In addition, the beamforming application must be partitioned
for such a modular platform. A hierarchical beamformer is used to perform multi-
stage beamforming, and hybrid beamforming is used to perform the first stages in
the analogue domain for further cost savings. A beamforming system must also be
able to search and track signals-of-interest in a dynamic environment. Many search

and track algorithms are costly in terms of processing and as such not very suit-
able for a low-cost platform with limited resources. Therefore, we have presented
E-CMA as a low-cost tracking algorithm for PSK modulated signals. However, E-
CMA is not suitable for hierarchical beamforming because it computes a steering
vector for a single stage. Therefore A-CMA is presented that provides a steering
angle, which can be used for all stages, at the cost of a quadratic dependence on
the number of antennas instead of linear for E-CMA.

A generic beamforming platform requires scalability and flexibility, making a
tiled reconfigurable architecture a good fit, for the tiles are modular and recon-
figuration enables efficient reuse of the hardware. Beamforming is explored on
a number of such architectures, which confirm that tiles provide scalability and
reconfigurability provides flexibility. Yet, programming such architectures is not
easy: applications must be partitioned, the parts can not have shared state, and the
communication must be explicit. In addition, the used reconfigurable processor
requires a lot of effort to program, and there are only a few clock cycles per in-
put sample for the beamforming application, requiring a relatively large amount of
communication per computation. To improve usability, dataflow models are used
to represent an application for a tiled architecture, as it can represent the parts of
the application as processes, and the communication between them as channels,
making the communication explicit. Furthermore, the use of a dataflow model
takes care of synchronisation, which is very convenient in beamforming applica-
tions which have many data streams.

A design flow has been presented, to accompany the UNITI framework, based
on model transformations. The first step is the co-design step for the division of a
specification to a representation of the environment, the application and the archi-
tecture. Analogue/digital co-design is used to determine which components of the
environment and the architecture to model in the CT domain and which in the DT
domain. Hardware/software co-design is used to determine which components of
the application to model in the DT domain in hardware and which to model in
the DF domain in software. The next step is the partitioning step for the division
of the application on a tiled architecture. As such, the application is parallelised.
Mapping and code generation provide the final implementation.

The UNITI framework supports this design flow by allowing a single unified
model in the CT, DT and DF domain. Model components can be domain inde-
pendent, and can thus be moved between domains. Parallelisation is supported
by (mathematical) model definitions using aggregate operations, such as element-
wise or reduction operations. The mathematical definitions do not unnecessarily
restrict the dependencies between computations, and the aggregate operation en-
courages parallel definitions.

The Un1T1 design flow and modelling and simulation framework presented in
this thesis is further explored with a case study concerning the design of a generic
beamforming platform. First, a formal specification is presented, which is executed
for verification. Next, the specification is refined into a multi-domain model with
components representing the environment, the architecture and the application.
This model is compared to an equivalent model in Simulink and found to be at least

189

190

as fast and up to 30 times faster, while providing exact simulations of time delays.
Thereafter, the beamforming operation is partitioned to a hierarchical beamformer
using a model transformation, and for which different granularities are explored.
The mapping and implementation have been performed without UNITI support,
yet it verifies the scalability of a hierarchical beamformer on a tiled architecture.
Opverall, UNITI is successfully applied to the design of an embedded system. As
such, we have taken a few steps forward by providing a functional design flow and
framework with support for multiple domains and model transformations.

71 RESEARCH QUESTIONS

Following the conclusions we will now address the research questions presented in
chapter 1 directly:
o What is a suitable design flow for embedded systems based on a divide-and-
conquer approach?
A model-based design flow supported by model transformations for the co-
design, partitioning and code generation steps is suitable for the design of
complex embedded systems. Such a design flow requires support for mod-
elling the environment, the architecture and the application of an embedded
system in a unified approach. Such a design flow follows from the increas-
ing interaction of embedded systems with their environment, the need for a
tiled architecture to support scalability and the use of a divide-and-conquer
approach to manage complexity.

o What is required from a modelling and simulation framework to support this
design flow?
A single model is required for the CT, DT and DF domains. The integration
of these domains needs a unified perspective on time, signals and compo-
nents, with support for sequential, parallel and feedback composition, as
well as support for different notions of time. To support model transfor-
mations, support is needed for mathematical model definitions and appli-
cations that are defined using aggregate operations.

o Aretiled reconfigurable architectures suitable for large high-performance appli-
cations?
The tiles provide modularity and scalability, but also require the applica-
tions to be partitioned in independent parts with explicit communication.
The reconfigurability provides flexibility, yet programming a reconfigurable
system takes a lot of effort. Thus, the use of a tiled reconfigurable architec-
ture requires additional effort over a single core fully programmable solution
(which is not feasible for such large applications), but less than a fully ded-
icated implementation. Furthermore, the use of dataflow models improves
usability by representing a partitioned application with explicit communi-
cation, providing synchronisation, and providing analysis of the model. Fi-
nally, a design flow and modelling and simulation framework supporting
such architectures is needed, as provided in this thesis.

7.2 DISCUSSION

This thesis covers a broad range of subjects and in addition presents the design of an
embedded system all the way from specification to implementation. It also com-
bines several research areas; systems engineering, signal processing applications,
computer architectures and functional programming.

This has the advantage that we have touched upon most aspects in designing
embedded systems and are able to provide contributions at the boundaries of re-
search areas. Yet, we have not been able to discuss all topics in-depth. In particular,
the representation of the architecture in the model, including structural aspects
and cost aspects, has been limited. Furthermore, we have found that the signal pro-
cessing model, distributed concurrent applications, and mapping of applications
onto a tiled architecture are all based on dataflow, while the processor tiles are still
based on control flow. We would have gladly discussed dataflow processors as a
reconfigurable processor for streaming application, matching very well with tiled
architectures, as we have explored in [KCR:5, KCR: 16] and [114] for example.

Finally, we have presented novel perspectives on modelling time, exact simula-
tion of time transformations, and local solvers, as well as representing and integrat-
ing signals and components in the CT, DT and DF domains. The full consequences
of these choices in more than a single case study will have to be evaluated. For ex-
ample; are there models that can not be represented using UN1T1, and what is the
numerical accuracy and stability when using multiple feedback loops and local
solvers?

73 OUTLOOK

The design of embedded systems using model-based design and supported by a
framework like UNIT1 seems well positioned [13, 42, 48, 59, 68]. Several of its ad-
vantages have been presented in this thesis. Of course, there are many opportuni-
ties for future work.

Some of the work has already been mentioned during the discussion. For ex-
ample, hardware aspects of the architecture, such as hardware cost, resource costs,
timing, structure, etc. were intended to be included as meta-data in the models.
Furthermore, the use of dataflow processors as tiles would be interesting to further
explore.

For beamforming applications, the use of hierarchical hybrid arrays raises in-
teresting questions concerning the use of different antenna configurations for sub-
arrays, and the combination of time delay based beamforming stages with phase
shift based beamforming stages.

Concerning UNITI, there remains a lot to be done. The problem that occurs
when feedback in the CT domain is combined with state for more efficient simu-
lations is an important hurdle to be solved. Furthermore, we expect to be able to
integrate additional domains, such as finite state machines or timed automata, be-
cause a CT signal can be changed to a (completely) different function depending

191

192

on the time, thereby representing a state change. Analysis of dataflow models is
currently not supported, but should be easy to add, as we can already extract a vi-
sualisation of the model and can thus also extract different formats as required by
existing analysis tools.

Usability of the UN1TI tool would be improved if a graphical view of the models,
as well as a design environment, complement the textual representations. This is
because graphical tools are intuitive to use and common in systems design tools.
However, the textual representation remains important, for example for the initial
specification or for complex components.

Finally, the mapping and implementation of the design flow should be better
supported by the framework. There are promising mapping tools available [45,
97] which could be integrated, or at least supported similarly to the support for
dataflow analysis tools. In addition, in the NEST project [67] there is ongoing work
enabling the execution of Haskell code on a 32 core architecture, thereby greatly
simplifying the code generation part. There is also ongoing research to generate
hardware from definitions similar to the UN1TI definitions [6], using a hardware
description language (VHDL) as intermediate. Supporting hardware generation
using this should be relatively straightforward, skipping the mapping and code
generation steps altogether.

APPENDIX

Dataflow

Dataflow refers to the flow of data as contrasted to the flow of control as used in
(sequential) stored-program models such as a von Neumann machine. Originally
dataflow was introduced as an execution model for dataflow machines; execution
is performed by actors on the availability of abstract data elements called tokens
thereby reducing the task of explicit memory management [64, 108]. A directed
graph representation indicates the dependencies between the actors, where the
nodes of the graph represent actors and the edges represent queues of tokens. Exe-
cution of an actor is also called firing of a node. A node can only fire if it is enabled
as determined by the enabling or firing rule. The firing rule specifies how many
tokens are required and must therefore be available for each input of the node.

Dataflow was later introduced as a useful model for signal processing known
as synchronous dataflow (SDF) [57] (also called MRDF). In this model, a node
represents functions or computations and edges represent signal paths.

The third approach sees dataflow as a special case of a Kahn PN and is known as
a dataflow PN. In a dataflow PN, nodes represent processes and edges represent un-
bounded FIFO channels, where processes are concurrent continuously executing
functions and consume tokens from channels and produce tokens into channels. As
such, dataflow processes can be seen as mapping sequences of inputs to sequences
of outputs or functions on streams [55].

A1 TERMINOLOGY

Note that in each approach above the terminology is slightly different. Nodes rep-
resent actors, functions or processes, where an actor performs a computation, a
function is a computation and a process is the action of running a computation.
Similarly, edges represent availability of data, signal paths or channels, where chan-
nels represent both the data as the signal path. However, these terminologies are

194

often used interchangeably. Lee and Matsikoudis [55] argue and show that data-
flow PN are a generalisation as they can describe SDF and dataflow execution as
dataflow PNs.

A.2 DATAFLOW MODEL

A dataflow model or dataflow process network is a graph of nodes (processes) con-
nected by edges (channels); data tokens are processed (computed) inside nodes and
sent (communicated) from one node to another through the edges. Thus, nodes
represent computation and edges represent communication. Processes consume
and produce tokens by reading from and writing to channels, where tokens are
atomic data elements. As processes are independent, they may not influence each
other besides the explicit input and outputs, i.e. dataflow processes must be side-
effect-free. Channels are unbounded FIFO token containers used for interaction
between processes. Channels are of unbounded capacity, but buffers between pro-
cesses are modelled by two channels in opposite directions; one models the data to
be communicated and the so-called back-edge models empty space in the buffer.
Only a single process is allowed to read from and write to a channel.

A process may consume and produce several tokens at a time; when there are
not enough tokens available on the input edges of a node, that node will not ex-
ecute (fire). The condition that enables firing is called the firing rule. Note that
executions can overlap: if enough tokens are available to fire, the process directly
executes even if the process is already executing.

The number of tokens consumed and produced per firing (the rates) can be
variable. A SRDF graph always consumes and produces a single token, a MRDF
graph has a fixed token rate at each edge. In a CSDF graph, the token rates cycle
through a number of phases with fixed token rates (possibly zero) at each phase.
VPDF graphs have a limited form of data-dependent token rates [115], where the to-
ken rate is determined by a parameter from an input channel. Finally, DDF graphs
have fully data-dependent token rates.

A.3 DATAFLOW ANALYSIS

As execution depends on availability of tokens, cycles in the graph can introduce
deadlock (where the processes are waiting on each other). In general (for DDF) it s
undecidable if a graph will deadlock [64]. In addition, if more tokens are produced
than consumed for a channel tokens accumulate requiring infinite buffers. A back-
edge limits the buffer size required, but how much buffer space is needed? Too
much space leaves part of the buffer unused, but too little space results in dead-
lock. For restricted dataflow models such as SDF, where the number of tokens
consumed and produced is not data-dependent and thus unpredictable, deadlock
freedom can be proven and the minimum buffer sizes required for this can be com-
puted [115]. Furthermore, by assigning an execution time to each firing of a process,
the latency and throughput of the model can be calculated.

Dataflow models have no notion of time, only ordering. For metrics such as
throughput and latency to make sense, and allow them to be determined by the
analysis techniques, processes in the dataflow model are annotated with execu-
tion time. Consumption and production of tokens is assumed instantaneous in
the model; the time that consumption and production takes in the “real world” is
absorbed by the execution time. In practice, data enters the application via one or
more source processes (e.g., an ADC that samples data at fixed time intervals) and
leaves the application via one or more sink processes (e.g., a DAC). The data rates
for these sources and sinks are fixed and therefore, they determine the application’s
performance constraints.

For the analysis to be valid, the computations clustered as a single process must
be side-effect free and the (worst-case) execution times must be conservative (real
execution times should not be larger than the worst-case estimate) [16]. Dataflow
processes and models are monotonic (order-preserving), causal (depend only on
previous and current inputs) and deterministic (same output results for the same
inputs, independent of the firing order) [57].

A.4 DATAFLOW EXECUTION

There are several execution models for the DF domain (e.g. concurrent processes,
compilation of dataflow graphs, tagged token model) [57]. The most common is to
implement dataflow processes as concurrent processes with static scheduling and
implement the firing rules as a sequence of “read”, “execute” and “write” phases,
although there is no clear winner [56, 57, 64, 82, 115].

For the non-data-dependent dataflow models (SRDF, MRDF and CSDF), a
static execution schedule can be determined at design time. This eliminates the
need for a scheduler when executing on a single processing resource. All dataflow
models have self-timed execution. Therefore there is no need for global control of
the execution.

A.5 PROPERTIES

Dataflow models have a number of useful properties. Firstly, tokens in channels
must remain ordered and no tokens can be lost.

Secondly, in dataflow different data rates are decoupled. A process can only
execute if all required input tokens are available, otherwise it will block. Therefore,
it is not important when and in what order * the tokens arrive; as soon as the last
input required for firing is available the process executes thereby consuming the
inputs. If after firing enough tokens are available to enable the process once again,
it can execute straight away concurrently in the model. To limit the number of
concurrent executions of a process self-edges are used, i.e. channels that loop back
to the process itself. As the self-edge becomes an extra enabling condition, the next

''This refers to the order of arrival of tokens over the (empty) input channels, not to the order of
tokens in a channel

195

196

execution of a process can only start after a previous execution has finished thereby
producing one or more tokens on the self-edge.

Thirdly, because tokens are only consumed when all required tokens are avail-
able to the process, this ensures synchronisation of the processes’ inputs. As said,
dataflow assumes unbounded FIFO channels, but buffers are modelled with back-
edges representing buffer space. A process writing to this buffer can only execute
if a “space” token is available. This ensures no data is overwritten and lost. Assume
process 1 produces into a buffer and process 2 consumes from it. If the execution
of process 2 takes longer than that of process 1, tokens from process 1 accumulate
in the buffer until it is full, causing process 1 to wait until process 2 produces new
“space” tokens. This is called back-pressure and ensures synchronisation of compu-
tations.

Finally, any process that is enabled can execute, independent from other pro-
cesses. Therefore, processes that are waiting for input do not prevent other pro-
cesses from executing, making dataflow latency tolerant.

APPENDIX

The MONTIUM

The MoNTIUM is an example of a coarse-grained reconfigurable processor [43] de-
veloped by Recore Systems [81]. It is optimised for signal processing operations.
Several core operations, called kernels, for signal processing applications have been
implemented on the MONTIUM; signal processing operations such as FIR filters and
FFTs [44] and a number of baseband processing and wireless communication ker-
nels such as CDMA and OFDM receivers, Viterbi and Turbo decoders [79] and
Reed-Solomon decoding [KCR:1].

We will first present an overview of the processor landscape in order to position
coarse-grained reconfigurable processors. Then we will discuss the MONTIUM ar-
chitecture in detail. Finally, we will present the implementations of three relatively
complex (compared to the capabilities of the MONTIUM) operations: a coordinate
transformation for determining the magnitude and phase of a complex number
using CORDIC, computation of the sine function using a LUT, and computing a
complex division.

B.1 PROCESSOR LANDSCAPE

Processing hardware can be divided into five groups with increasing efficiency, but
decreasing flexibility [43]: general purpose processors (GPPs), application-domain
optimised processors, coarse-grained reconfigurable processors, fine-grained re-
configurable processors, and ASICs.

A GPP is designed for general use and therefore offers the most flexibility, but
has limited parallelism. Since operations are done sequentially, high clock speeds
are needed to give good performance, resulting in lower energy efficiency. Further-
more, they implement ALUs that can compute a large variety of different opera-
tions, improving flexibility but requiring more control and energy overhead.

A digital signal processor (DSP) or a graphics processing unit (GPU) can be
seen as a GPP optimised for an application domain, signal processing and graph-

198

ics respectively. Therefore they provide higher performance and energy efficiency
for those domains, while still providing much of the flexibility of a GPP. DSPs have
support for complex numbers, saturated computations, MACs operations and FFT
butterfly operations for example, all of which are useful for the beamforming appli-
cation. Another large advantage of GPPs, DSPs and GPUs is the support for higher
level programming languages and tools.

Coarse-grained reconfigurable hardware is designed for word level algorithms.
These are the same algorithms as the DSP is intended for, but instead of running
a program, the hardware is configured to perform a certain task. This implies that
signal paths are relatively stable improving energy efficiency. As expected, its flexi-
bility comes from the ability to reconfigure the hardware for a particular algorithm
within the hardware’s application domain. Because the functional blocks are larger
compared to fine-grained reconfigurable hardware, the overhead is less and this
increases its power efficiency.

Fine-grained reconfigurable hardware, such as FPGAs, uses look-up tables to
implement functionality and an extensive configurable interconnect between them.
Configurability is therefore at the bit-level. Since the design of a fine-grained re-
configurable hardware device is very regular, it can be highly optimised for per-
formance.However, the user is essentially specifying hardware, that is synthesised
to configurations, therefore requiring more effort [104]. Furthermore, reconfigura-
tion times are in the milli-second to second range [104].

If designed properly, an ASIC is the most efficient. It is efficient because the
hardware is designed specifically for certain functionality and is not changeable.
Therefore, the flexibility of an ASIC is limited by design.

B.2 THE MONTIUM PROCESSOR

The MoNTIUM processor is an example of a coarse-grained reconfigurable proces-
sor intended for signal processing operations. As such, it nicely balances (energy)
efficiency versus flexibility for this application domain [44].

The MoNTIUM is shown in figure B.1 and consists of three parts; the processing
part array (PPA), the (instruction) decoders and the sequencer. Furthermore, it is
connected to a communication and configuration unit (CCU) [104]. Its template
based design allows for customisation of architectural properties. The default de-
sign has a data path width of 16 bit, a targeted clock frequency of 100 MHz for 90 nm
technology, 5 parallel ALUs and 10 local memories of 1024 words. Its silicon area is
approximately 2 mm? and its power consumption is approximately 550 yW/MHz.

Sequencer The sequencer stores and controls a sequence of instructions, i.e. a
program or kernel. A program counter is used for the program flow and is directly
connected to a static random-access memory (SRAM) containing the program to
select the next instruction to be executed. Hence, an instruction can be fetched
immediately from local memory and is not affected by a typical memory hierarchy

PPA
Mot Moz Moz Moy Mos Mo6 Moy Mo8 Moy Mio

A B CD A B CD A B CD A B CD A B CD
ALUT Eb—W ALUz EHA—W ALU3 ERb—W ALUs ERHA—{w ALUs
OUT2_OUTH OUT2_OUTY OUT2_OUT1 OUT2_OUTH OUT2 OUTH
| — | |

Memory Inter- Register ALU
decoder onnect decoder decoder
decoder
Sequencer
| —o

Communication and configuration unit

R R R R R R AR R R R R XX RL)

FIGURE B.1: MONTIUM

with caches in conventional architectures, in which access latency is unpredictable.
As there is no interaction between the data path and the instruction program, the
kernel execution is fully deterministic.

Instruction decoders Instructions from the sequencer are decoded by the in-
struction decoders. A separate decoder is used for different parts of the proces-
sors; the memories, the interconnect, the registers and the ALUs. Each decoder
contains a subset of all possible control signal combinations for that part. Fields in
the sequencer instruction select an entry in each decoder, thereby severely limiting
the needed control signals from instructions. Furthermore, decoder entries can be
shared between instructions. Together this enables efficient storage of kernels and
better energy efficiency as the number of changing control signals is reduced.

Processing part array Processing is performed using 5 processing parts. The
instruction decoders decompress instructions into control signals for the process-
ing parts. Each processing part contains an ALU, a register bank (4 deep for each
of the 4 inputs), and 2 local memories. They are connected with a large crossbar
consisting of 10 global buses that provides a high bandwidth to 10 memory units.
Each ALU can be connected to 2 of the memories via a local interconnect or to
the 8 other memories via the global buses. In addition, each ALU can receive an
intermediate value from its right neighbour ALU via an east-west connection. Us-
ing these 5 inputs, multiple operations can be executed simultaneously and from
each ALU at most 3 results can be generated (one to the west output and two to the
bottom outputs, which are connected to the interconnect).

199

200

L]

Level 1 [i
&L e l
function unit3 |----ssie----- function unit 4
(e)
M
A Z,A B SB C 7,8 D
| | | |
mX mY
T)

Level 2 LA ,B B D — east
IR =

west

IA B D

Level 3 G -
A 7,8 A 18
I i i Ll

mO; mOy
! !
01 02

FIGURE B.2: Structure of one MoNTIUM ALU

Each memory has an address generation unit (AGU) to generate common ad-
dressing patterns such as linear addressing, stride-by-# (i.e., the address is incre-
mented by n after each read or write operation), bit reversing (an output reordering
technique that is typically used for FFT algorithms) and modulo counting (e.g. for
creating circular buffers). This relieves the ALUs from the calculation of memory
addresses making its instructions much more regular and enabling the address cal-
culations to be performed in parallel with the data processing operations.

Figure B.2 shows the internal structure of one ALU. Each ALU consists of three
levels. The first level contains four function units capable of logical functions and
basic arithmetic. The two topmost function units are connected to four register
banks providing inputs. The lower two function units are connected to the output
of the units above. Each function unit generates status flags to indicate the occur-
rence of overflow, a negative result or whether its result equals zero. These status
flags may be used by the sequencer, for example for conditional jumps. The second
level contains a multiplier followed by an adder/subtracter for MAC operations. Ei-
ther the outputs of the first level or the register bank can be used as input for the
multiplier. The results or the same inputs are used as the left operand of the adder.
In addition, the right operand for the adder can be statically or dynamically (de-
pending on the value of the status bit SB) selected from inputs B, D, Z;A and Z; B.

Also note the east input that can be selected for the adder as well as the west output
of the result. The third level contains a butterfly unit for FFT operations.

The ALU outputs are selected from the outputs of each level. Almost all arith-
metic operations in the ALUs can be executed in either integer modus (i.e., they
operate on the 16 rightmost bits) or in 1.15 fixed point modus (i.e. the leftmost bit
is used as sign bit whereas the other bits contain the fixed point fraction). In order
to avoid overflow, the intermediate values can be saturated. Since the ALU is not
pipelined, the entire operation from the register file inputs to the ALU outputs can
be done within one clock cycle. Each ALU, memory or entire processing part can
be turned off when not used, saving energy.

Communication and configuration unit The CCU is responsible for control,
configuration, memory initialisation, synchronisation as well as interfacing with
the NoC. The CCU provides a configuration interface for temporally halting and
reconfiguring the MoNTIUM and starting a kernel. Furthermore it provides two
mechanisms for communication: block mode and streaming mode communica-
tion. In the block mode, the input samples are stored in the memories, and re-
trieved again when execution has finished, by means of a direct memory access
(DMA) transfer by the CCU. In streaming mode, a program configured in the
MoNTIUM can generate a read request for reading data from any input NoC con-
nection or generate a write request for writing data to any output NoC connection.
While waiting for a read or write request the MONTIUM can continue processing,
overlapping computation and communication.

B.3 KERNELS IMPLEMENTED ON THE MONTIUM

In this section, we will present three implementations of kernels [104] which are
used for the case study; a coordinate transformation, sine computation and com-
plex division.

Coordinate transformation A coordinate transformation from Cartesian coor-
dinates i = (x, y) to polar coordinates (7, 8) is defined as:

r=|u] =/x2+ y?

0 J

<1 = arctan =
x

However, the square-root and arc-tangent are computationally expensive opera-
tions which are not supported in hardware on the MonTIUM. These operations
can be implemented using LUTs. However, full 16 bit accuracy requires 2'° = 64k
memory locations, while the MoNTIUM only has 10 - 2!° = 10k local memory avail-
able. A more efficient approach is the CORDIC algorithm [110], which iteratively
approximates the magnitude and phase using only shift and add operations. Us-
ing CORDIC, or generalisations to the algorithm [112], also other operations, such
as the sine and division operation among others, can be approximated iteratively.
However, we will use different implementations for those operations.

201

The CORDIC equations are:

Xiy1 =X~ yi-d;i- 2")
di =+1 lfyi <0

202 _ i
i1 =Yit+xi-d;i-2 where)
Yirl = Yit Xit i e di=-1 otherwise
Ziv1 = Zi — di -tan’ (271)
In the limit this converges to:
Xn = An/x+ ¥}
Yn=0 Xn
r=—
Z, = zo + arctan (ﬁ) such that An
Xo 0=z,

n-1
Ay =[] V1+27%

i=0

Each x;41, yi41 and z;4; equation is implemented on a separate ALU. The shift
operation (27) and the optional negation (d,) based on y; are implemented using
level 1 of the ALUs. The addition or subtraction is implemented using level 3. This
implementation is shown in figure B.3. Using this implementation, one CORDIC
iteration can be computed per clock cycle.

The part of the equation that is multiplied by d;, i.e. y; - 2 for the calcula-
tion of x;, is always negated. Then based on d; either the negated or non-negated
value is chosen. The decision variable d; is generated as a status bit of one of the
functional units, which indicates if the value it contains (y; in this case) is nega-
tive or not. In case of x;,; this is a by-product of the shift-operation, otherwise
y; is passed to the function unit explicitly. As mentioned, the arc-tangent opera-
tion is not available. Therefore it is provided provided by a LUT. However, with
CORDIC only a limited number of arc-tangents need to be stored in memory, one
for each iteration. As each iteration adds one bit of accuracy to the result and the
MoNTIUM uses 16 -bit, a maximum of 16 iterations and thus 16 memory locations
are required. However, due to the limited word-width in combination with the bit-
shift operation, the smallest error is already reached after 14 iterations [104]. Note
that the CORDIC equations are only valid for angles between -7 and 7. For larger
angles an initial rotation is performed with a similar set of equations [104], thus
requiring one additional iteration. In addition, the gain A, of the CORDIC algo-
rithm must be corrected with a multiplication with a constant requiring another
clock cycle, giving a total of 16 clock cycles again.

Sine computation The CORDIC algorithm can also be used to calculate the sine
function [110], requiring another 16 clock cycles for 14 iterations of CORDIC. An
implementation as a LUT requires only 2 clock cycles; one for setting the mem-
ory address and one for retrieving the value. However, with 10 bit memories, the
accuracy of the sine function is limited to 10 bit.

Xisl ALU 1 Vil ALU 2 Zis1 ALU 3

FIGURE B.3: Implementation of the CORDIC algorithm

Complex division Again the CORDIC algorithm can be used for division [110],
at the cost of 16 clock cycles. For a complex division another generalisation is avail-
able [8], which uses complex valued decision variables and additional logarithmic
LUTs. We estimate it to take 2 clock cycles per iteration and 4.5 times as much
memory [8] to implement.

Using the multipliers of the MONTIUM, a more direct implementation is chosen.
Complex division is defined as:

a+jb ac+bd+j ,bc—ad_ac+bd+_bc—ad
cvjd c+dr v T IR / [

= =y

The computation of the two nominator parts requires four multiplications, an addi-
tion and a subtraction. The nominator is implemented using level 2 of 4 ALUs and
the east-west connections. The computation of the denominator |17|2 requires two
multiplications and an addition. The two divisions are implemented by replacing
them with multiplication and using a LUT for the multiplication factor ﬁ

Using 1.15 fixed-point values, however, means that with 7] in the range of
[0...1), ﬁ is in the range of (1. .. o), which cannot be represented in a 1.15 fixed
point notation. Therefore, a scale factor g must be included in the LUT, i.e. the
LUT implements # For example, for y = 1/160 the range of % is (0.00625... c0).
For this range, values of [i|* < 1160 = |¥] < \/% (»~ 0.08) are saturated to 1.

The LUT operation takes two clock cycles, but in the first clock cycle the de-
nominator is already computed, which is then multiplied with the result from the
LUT in the second clock cycle, giving a total of two clock cycles for the complex
division.

203

Acronyms

1D
2D
3D

A-CMA
ADC
AGU
AHB
ALU
AP
ASIC

BB
BC
BF
BS

CCU
CMA
CORDIC
CSDF
CT

DAC
DDF
DE

DF
DMA
DoA
DSP
DSP
DT
DVB-S

E-CMA
EDSL
ESPRIT

FFT
FIFO
FIR
FPGA

1-dimensional
2-dimensional
3-dimensional

angular CMA

analogue-to-digital converter
address generation unit

advanced high-performance bus
arithmetic logic unit

antenna processing

application specific integrated circuit

baseband
beamcontrol
beamforming
beamsteering

communication and configuration unit
constant modulus algorithm
coordinate rotation digital computer
cyclo-static dataflow

continuous-time

digital-to-analogue converter
dynamic dataflow

discrete event

dataflow

direct memory access

direction of arrival

digital signal processing

digital signal processor
discrete-time

digital video broadcast for satellite

extended CMA
embedded domain specific language
estimation of signal parameters by rotational invariance techniques

fast Fourier transform

first-in first-out

finite impulse response
field-programmable gate array

FRP functional reactive programming

GPP general purpose processor

GPU graphics processing unit
206 GUI graphical user interface

HDL hardware description language

HPBW half-power beamwidth

IC integrated circuit

IF intermediate frequency

INBW inter-null beamwidth

LO local oscillator

LOFAR low frequency array

LPT linear phase taper

LUT lookup table

MAC multiply-accumulate

MBiS multiple boards in a system
MCoB multiple chips on a board
MIMO multiple-input multiple-output
ML maximum likelihood

MPSoC multiprocessor system-on-chip
MRDF multi-rate dataflow

MUSIC multiple signal classification

NoC network-on-chip

ODE ordinary differential equation
ops operations per second

PN process network

PPA processing part array

PS phase shift

PSK phase-shift keying

QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying

RF radio frequency

RRC root-raised-cosine
SDF synchronous dataflow
SDR software-defined radio
SNR signal-to-noise ratio
SoC system-on-chip

SR synchronous/reactive

SRAM static random-access memory
SRDF single-rate dataflow

TD time delay
ULA uniform linear array

VLIW very long instruction word
VPDF variable-rate phased dataflow

ZOH zero-order-hold

Bibliography

(1]

(2]
(3]

(6]

(71

(9]

(10]

(11]

(12]

(13]

Haskell 98 Language and Libraries: The Revised Report. Journal of Functional Pro-
gramming, 13(1), January 2003.

Aeroflex Gaisler. The LEON2 processor. URL http://www.gaisler.com.

Ben Allen and Mohammad Ghavami. Adaptive Array Systems, Fundamentals and
Applications. Wiley, May 2005. ISBN 978-0-470-86189-9.

Apple-CORE consortium. Architecture Paradigms and Programming Languages for
Efficient programming of multiple CORES (Apple-Core) project. URL http://wuw.
apple-core.info/.

Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from
Berkeley. Technical Report UCB/EECS-2006-183, December 2006.

Christiaan Baaij, Mathijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards.
CAaSH: Structural Descriptions of Synchronous Hardware Using Haskell. In Digital
System Design: Architectures, Methods and Tools (DSD 2010), 13th Euromicro Confer-
ence on, pages 714-721, September 2010.

John Backus. Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs. Communications of the ACM, 21(8):613-641,
August 1978. DOI 10.1145/359576.359579.

Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller. BKM: a new hardware
algorithm for complex elementary functions. Computers, IEEE Transactions on, 43
(8):955-963, August 1994.

Arya Behzad. Radio Design for MIMO Systems with an Emphasis on IEEE 802.11n.
In Solid-State Circuits Conference (ISSCC 2007), IEEE International, 2007. Tutorial.

Gérard Berry and Georges Gonthier. The ESTEREL synchronous programming lan-
guage: design, semantics, implementation. Science of computer programming, 19(2):
87-152, November 1992. DOI 10.1016/0167-6423(92)90005-V.

Tjerk Bijlsma. Automatic parallelization of nested loop programs (for non-manifest real-
time stream processing applications). PhD thesis, University of Twente, July 2011. ISBN
978-90-365-3173-3. DOI10.3990/1.9789036531733.

Tjerk Bijlsma, Marco J. G. Bekooij, Piere G. Jansen, and Gerard J. M. Smit. Commu-
nication between Nested Loop Programs via Circular Buffers in an Embedded Mul-
tiprocessor System. In Software & Compilers for Embedded Systems (SCOPES 2008),
11th International Workshop on, pages 33-42. http://eprints.eemcs.utwente.nl/11970/,
March 2008. ISBN not assigned.

Benjamin S. Blanchard and Wolter J. Fabrycky. Systems Engineering and Analysis. Pren-
tice Hall, 3rd edition, 1998. ISBN 978-0-1313-5047-2.

http://www.gaisler.com
http://www.apple-core.info/
http://www.apple-core.info/
http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.3990/1.9789036531733

208

Koen C. H. Blom. DVB-S signal tracking techniques for mobile phased arrays. Master’s
thesis, University of Twente, December 2009.

Gerard Bos. Radio astronomy signal processing on a tiled reconfigurable architecture.
Master’s thesis, University of Twente, July 2010.

Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, 2nd edition, October 2004. ISBN 978-0-3872-3137-
2.

Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Sangiovanni-
Vincentelli. Languages and Tools for Hybrid Systems Design. Foundations and Trends
in Electronic Design Automation, 1(1/2):1-193, June 2006. DOI 10.1561/1000000001.

Paul Caspi and Marc Pouzet. Lucid Synchrone: une extension fonctionnelle de Lustre.
Journées Francophones des Langages Applicatifs (JFLA), February 1999.

Antony Courtney and Conal Elliott. Genuinely Functional User Interfaces. In ACM
SIGPLAN Haskell Workshop (HW’2001), pages 41-69, September 2001.

CRISP consortium. Cutting Edge Reconfigurable ICs for Stream Processing (CRISP)
project. URL http://www.crisp-project.eu/.

Marco de Vos. LOFAR: the first of a new generation of radio telescopes. In Acoustics,
Speech, and Signal Processing (ICASSP’05), IEEE International Conference on, pages
865-868, March 2005. DOI 10.1109/ICASSP.2005.1416441.

Marco de Vos, André W. Gunst, and Ronald Nijboer. The LOFAR Telescope: System
architecture and signal processing. Proceedings of the IEEE, 97(8):1431-1437, August
2009. DOI'10.1109/JPROC.2009.2020509.

Peter J. Denning. The locality principle. Communications of the ACM, 48(7):19-24,
July 2005. DOI 10.1145/1070838.1070856.

Johan Eker et al. Taming heterogeneity - the Ptolemy approach. Proceedings of the
IEEE, 91(1):127-144, January 2003. DOI 10.1109/JPROC.2002.805829.

Conal Elliott. Functional Implementations of Continuous Modeled Animation. In
Principles of Declarative Programming (PLILP’98/ALP’98), 10th International Sympo-
sium on, pages 284-299. Springer, July 1998.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In Functional pro-
gramming (ICFP 97), 2nd ACM SIGPLAN international conference on, pages 263-273.
ACM, August 1997. ISBN 0-89791-918-1. DOI 10.1145/258948.258973.

Cagkan Erbas, Andy D. Pimentel, Mark Thompson, and Simon Polstra. A frame-
work for system-level modeling and simulation of embedded systems architec-
tures. EURASIP Journal on Embedded Systems, 2007(1), January 2007 DOI
10.1155/2007/82123.

ETSI. Digital video broadcasting (DVB); framing structure, channel coding and mod-
ulation for the 11/12 GHz satellite services. Technical Report ETSI EN 300 421 (V1.1.2),
August 1997.

ETSI. Digital Video Broadcasting (DVB): Second generation framing structure, chan-
nel coding and modulation system for Broadcasting. Technical Report ETSI EN 302
307 V1.2.1, August 2009.

http://dx.doi.org/10.1561/1000000001
http://www.crisp-project.eu/
http://dx.doi.org/10.1109/ICASSP.2005.1416441
http://dx.doi.org/10.1109/JPROC.2009.2020509
http://dx.doi.org/10.1145/1070838.1070856
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1145/258948.258973
http://dx.doi.org/10.1155/2007/82123
http://dx.doi.org/10.1155/2007/82123

(30]

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

[44]

[45]

Thomas Huining Feng and Edward A. Lee. Scalable Models Using Model Transforma-
tion. In Model Based Architecting and Construction of Embedded Systems (ACESMB),
Ist International Workshop on. EECS Department, University of California, Berkeley,
September 2008.

John G. E. Francis. The QR transformation. The Computer Journal, 4(3):265, 1961.

Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented Language
for System Modeling and Simulation. In Eric Jul, editor, ECOOP’98 - Object-Oriented
Programming. Springer, 1998. DOI10.1007/BFb0054087.

Lal Chand Godara. Smart antennas. CRC Press, January 2004. ISBN 978-0-8493-
1206-9.

Dominique N. Godard. Self-recovering equalization and carrier tracking in two-
dimensional data communication systems. Communications, IEEE Transactions on,
28(11):1867-1875, November 1980. DOI 10.1109/TCOM.1980.1094608.

Christoph Grimm, Martin Barnasconi, Alain Vachoux, and Karsten Einwich. An
Introduction to Modeling Embedded Analog/Mixed-Signal Systems using SystemC
AMS Extensions. Technical report, June 2008.

André W. Gunst and Gideon W. Kant. Signal Transport and Processing at the LOFAR
Remote Stations. In 28th Union Radio-Scientifique Internationale General Assembly
(URSI 2005), October 2005.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data flow programming language LUSTRE. Proceedings of the IEEE, 79(9):
1305-1320, September 1991. DOI 10.1109/5.97300.

Robert C. Hansen. Phased Array Antennas. Wiley, January 1998. ISBN 978-0-4715-
3076-3.

Andreas Hansson. A composable and predictable on-chip interconnect. PhD thesis,
Technische Universiteit Eindhoven, June 2009. ISBN 978-90-386-1871-5.

Simon Haykin. An introduction to analog and digital communications. Wiley, 1989.
ISBN 978-0-471-85978-8.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 4th edition, September 2006. ISBN 978-0-12-370490-
0.

Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems Design Challenge.
In Formal Methods (FM 2006), 14th International Symposium on, pages 1-15. Springer,
August 2006.

Paul M. Heysters. Coarse-Grained Reconfigurable Processors - Flexibility meets Effi-
ciency. PhD thesis, University of Twente, September 2004. ISBN 978-0-139-42716-3.

Paul M. Heysters and Gerard]J. M. Smit. Mapping of DSP Algorithms on the
Montium Architecture. In Parallel and Distributed Processing Symposium (RAW
2003), 17th IEEE International. http://eprints.eemcs.utwente.nl/1516/, April 2003. DOI
10.1109/IPDPS.2003.1213333.

Philip K. E Holzenspies. On run-time exploitation of concurrency. PhD thesis, Univsity
of Twente, April 2010. ISBN 978-90-365-3021-7. DOI 10.3990/1.9789036530217.

209

http://dx.doi.org/10.1007/BFb0054087
http://dx.doi.org/10.1109/TCOM.1980.1094608
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/IPDPS.2003.1213333
http://dx.doi.org/10.1109/IPDPS.2003.1213333
http://dx.doi.org/10.3990/1.9789036530217

210

[46]

(59]

[60]

(61]

[62]

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots,
and Functional Reactive Programming. In Advanced Functional Programming, pages
159-187. Springer, 2003. ISBN 978-3-540-40132-2. DOI10.1007/978-3-540-44833-4_6.

Graham Hutton. Programming in Haskell. Cambridge University Press, January 2007.
ISBN 978-0-5216-9269-4.

Axel Jantsch. Modeling Embedded Systems and SoCs: Concurrency and Time in Models
of Computation. Morgan Kaufmann, June 2003. ISBN 978-1-55860-925-9.

Eric A. M. Klumperink, Bram Nauta, André B. J. Kokkeler, and Gerard J. M. Smit.
CMOS Beamforming Techniques STW project proposal. Technical report, 2006.

Marco J. Kruijswijk. Hierarchical wideband beamforming using fixed weights. Master’s
thesis, University of Twente, June 2011.

Timo I. Laakso, Vesa Vilimiki, Matti Karjalainen, and Unto K. Laine. Splitting the
unit delay - Tools for fractional delay filter design. IEEE Signal Processing Magazine,
13(1):30-60, January 1996.

Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire. Program-
ming real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321-1336,
September 1991. DOI 10.1109/5.97301.

Edward A. Lee. Cyber Physical Systems: Design Challenges. In Object Oriented
Real-Time Distributed Computing (ISORC 2008), 1ith IEEE International Symposium
on, pages 363-369. IEEE, May 2008. DOI 10.1109/ISORC.2008.25.

Edward A. Lee. Computing Needs Time. Communications of the ACM, 52(5):70-79,
May 2009. DOI10.1145/1506409.1506426.

Edward A. Lee and Eleftherios Matsikoudis. The Semantics of Dataflow with Firing.
In From Semantics to Computer Science. Cambridge University Press, September 2009.
ISBN 978-0-5215-1825-3.

Edward A. Lee and David G. Messerchmitt. Synchronous Data flow. Proceedings of
the IEEE, 75(9):1235-1245, September 1987. DOI 10.1109/PROC.1987.13876.

Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773-801, May 1995. DOI10.1109/5.381846.

Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. A Framework for Comparing
Models of Computation. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 17(12):1217-1229, December 1998. DOI10.1109/43.736561.

Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. 2011. ISBN 978-0-557-70857-4.

Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In Embedded Software
(EMSOFT’07), 7th ACM & IEEE International Conference on, pages 114-123, October
2007. DOI10.1145/1289927.1289949.

MapleSoft. MapleSim. URL http://www.maplesoft.com/products/
maplesim/.

Conor McBride and Ross Paterson. Functional Pearl: Applicative program-
ming with effects. Journal of Functional Programming, 18(1):1-13, 2008. DOI
10.1017/50956796807006326.

http://dx.doi.org/10.1007/978-3-540-44833-4_6
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1145/1506409.1506426
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/43.736561
http://dx.doi.org/10.1145/1289927.1289949
http://www.maplesoft.com/products/maplesim/
http://www.maplesoft.com/products/maplesim/
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326

[63]

(64]

[65]

[66]

(67]

(68]

[69]

(70]

(71]

[72]

(73]

(74]

[75]

(76]

[77]

(78]

(79]

Wolfgang Mueller, Alberto Rosti, Sara Bocchio, Elvinia Riccobene, Patrizia Scan-
durra, Wim Dehaene, and Yves Vanderperren. UML for ESL design: basic princi-
ples, tools, and applications. In Computer-Aided Design (ICCAD 2006), IEEE/ACM
International Conference on, pages 73-80. ACM, November 2006. DOI 10.1109/IC-
CAD.2006.320068.

Walid A. Najjar, Edward A. Lee, and Guang R. Gao. Advances in the dataflow com-
putational model. Parallel Computing, 25(13-14):1907-1929, December 1999. DOI
10.1016/50167-8191(99)00070-8.

National Instruments. NI LabVIEW - Improving the Productivity of Engineers and
Scientists. URL http://www.ni.com/labview/.

Paul A. Nelson and Stephen J. Elliott. Active Control of Sound. Academic Press, June
1993. ISBN 978-0-125-15426-0.

NEST consortium. Netherlands Streaming (NEST) project. URL http://www.
nest-consortium.nl/.

Gabriela Nicolescu and Pieter J. Mosterman. Model-Based Design for Embedded Sys-
tems. CRC Press, November 2009. ISBN 978-1-4200-6784-2.

Hristo Nikolov et al. Daedalus: toward composable multimedia MP-SoC design. In
Design Automation Conference (DAC08), 45th annual, pages 574-579. ACM, June
2008. ISBN 978-1-60558-115-6. DOI 10.1145/1391469.1391615.

Object Management Group, Inc. (OMG). OMG Systems Modeling Language (OMG
SysML). Technical Report Version 1.1, November 2008.

OMG Architecture Board ORMSC. Model Driven Architecture (MDA). Technical
Report ormsc/2001-07-01, July 2001.

Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’'Reilly
Media, November 2008. ISBN 978-0-5965-1498-3.

Ross Paterson. Arrows and computation. In The Fun of Programming, pages 201-222.
Palgrave Macmillan, March 2003. ISBN 978-1-4039-0772-1.

Arogyaswami J. Paulraj, Richard H. Roy, and Thomas Kailath. A subspace rotation
approach to signal parameter estimation. Proceedings of the IEEE, 74(7):1044-1046,
July 1986. DOI 10.1109/PROC.1986.13583.

John Peterson, Gregory D. Hager, and Paul Hudak. A language for declarative robotic
programming. In Robotics and Automation, IEEE International Conference on, pages
1144-1151. IEEE, May 1999. DOI10.1109/ROBOT.1999.772516.

Rik Portengen. Phased array antenna processing on reconfigurable hardware. Master’s
thesis, University of Twente, December 2007.

John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing. Prentice Hall,
4th edition, April 2006. ISBN 978-0-1318-7374-1.

Gerard K. Rauwerda. Multi-Standard Adaptive Wireless Communication Receivers
- Adaptive Applications Mapped on Heterogeneous Dynamically Reconfigurable Hard-
ware. PhD thesis, University of Twente, January 2008. ISBN 978-90-365-2607-4. DOI
10.3990/1.9789036526074.

Gerard K. Rauwerda, Paul M. Heysters, and Gerard J. M. Smit. Towards Software
Defined Radios using Coarse - Grained Reconfigurable Hardware. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 16(1):3-13, January 2008. DOI
10.1109/TVLSI.2007.912075. ISSN 1063-8210.

211

http://dx.doi.org/10.1109/ICCAD.2006.320068
http://dx.doi.org/10.1109/ICCAD.2006.320068
http://dx.doi.org/10.1016/S0167-8191(99)00070-8
http://dx.doi.org/10.1016/S0167-8191(99)00070-8
http://www.ni.com/labview/
http://www.nest-consortium.nl/
http://www.nest-consortium.nl/
http://dx.doi.org/10.1145/1391469.1391615
http://dx.doi.org/10.1109/PROC.1986.13583
http://dx.doi.org/10.1109/ROBOT.1999.772516
http://dx.doi.org/10.3990/1.9789036526074
http://dx.doi.org/10.3990/1.9789036526074
http://dx.doi.org/10.1109/TVLSI.2007.912075
http://dx.doi.org/10.1109/TVLSI.2007.912075

212

(80]

(81]
(82]

(83]

(84]

(92]

[95]

Behzad Razavi. RF microelectronics. Prentice Hall, November 1997. ISBN 978-0-1388-
7571-5.

Recore Systems. The Montium processor. URL http://www.recoresystems.com.

Hideki John Reekie. Realtime Signal Processing: Dataflow, Visual, and Functional Pro-
gramming. PhD thesis, University of Technology Sydney, September 1995.

Kenneth C. Rovers. Front-end research for a low-cost spectrum analyser. Master’s thesis,
University of Twente, June 2006.

Richard H. Roy, Arogyaswami J. Paulraj, and Thomas Kailath. ESPRIT - A subspace
rotation approach to estimation of parameters of cisoids in noise. Acoustics, Speech
and Signal Processing, IEEE Transactions on, 34(5):1340-1342, October 1986. DOI
10.1109/TASSP.1986.1164935.

Michael Riibsamen and Alex B. Gershman. Direction-of-Arrival Estimation for
Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC
Methods. Signal Processing, IEEE Transactions on, 57(2):588-599, February 2009. DOI
10.1109/T'SP.2008.2008560.

Ingo Sander. System modeling and design refinement in ForSyDe. PhD thesis, KTH
Royal Institute of Technology, April 2003.

Ingo Sander and Axel Jantsch. System modeling and transformational design refine-
ment in ForSyDe. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 23(1):17-32, January 2004. DOI 10.1109/TCAD.2003.819898.

Ralph O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation. An-
tennas and Propagation, IEEE Transactions on, 34(3):276-280, March 1986. DOI
10.1109/TAP.1986.1143830.

Dana Scott and Christopher Strachey. Toward a mathematical semantics for program-
ming languages. In Computers and Automata, Symposium on, pages 19-46. Sympo-
sium on Computers and Automata, April 1971.

Merrill I. Skolnik. Introduction to Radar Systems. McGraw-Hill, 3rd edition, Decem-
ber 2000. ISBN 978-0-0704-4533-8.

Gerard J. M. Smit, André B. J. Kokkeler, Pascal T. Wolkotte, Philip K. F. H6lzenspies,
Marcel D. van de Burgwal, and Paul M. Heysters. The Chameleon Architecture for
Streaming DSP Applications. EURASIP Journal on Embedded Systems, 2007:78082,
January 2007. DOI 10.1155/2007/78082.

Gerard J. M. Smit, André B. J. Kokkeler, Pascal T. Wolkotte, and Marcel D. van de
Burgwal. Multi-core Architectures and Streaming Applications. In System Level In-
terconnect Prediction (SLIP 2008), 10th International Workshop on, pages 35-42, April
2008. DOI 10.1145/1353610.1353618.

Samir S. Soliman and Mandyam D. Srinath. Continuous and Discrete Signals and
Systems. Prentice Hall, 2nd edition, January 1998. ISBN 978-0-135-1847-3.

Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed De-
prette. System design using Khan process networks: the Compaan/Laura approach.
In Design, Automation & Test in Europe Conference & Exhibition (DATE 2004), pages
340-345, February 2004. DOI 10.1109/DATE.2004.1268870.

Fasil C. Taddesse. Implementation of adaptive beamforming on a multiprocessor system
on chip. Master’s thesis, University of Twente, September 2010.

http://www.recoresystems.com
http://dx.doi.org/10.1109/TASSP.1986.1164935
http://dx.doi.org/10.1109/TASSP.1986.1164935
http://dx.doi.org/10.1109/TSP.2008.2008560
http://dx.doi.org/10.1109/TSP.2008.2008560
http://dx.doi.org/10.1109/TCAD.2003.819898
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1155/2007/78082
http://dx.doi.org/10.1145/1353610.1353618
http://dx.doi.org/10.1109/DATE.2004.1268870

[96] Walid Taha, Paul Brauner, Robert Cartwright, Verénica Gaspes, Aaron Ames, and
Alexandre Chapoutot. A Core Language for Executable Models of Cyber Physical
Systems. ACM SIGBED Review, 8(2):39-43, June 2011. DOI10.1145/2000367.2000376.

[97] Timon D. ter Braak, Philip K. E Holzenspies, Jan Kuper, Johann L. Hurink, and Ger-
ard J. M. Smit. Run-time spatial resource management for real-time applications on
heterogeneous MPSoCs. In Design, Automation & Test in Europe Conference ¢ Ex-
hibition (DATE 2010), pages 357-362. European Design and Automation Association,
March 2010. ISBN 978-3-9810801-6-2.

[98] Timon D. ter Braak, Hermen A. Toersche, André B. J. Kokkeler, and Gerard J. M.
Smit. Adaptive resource allocation for streaming applications. In Embedded Computer
Systems (SAMOS 2011), International Conference on, pages 388-395, July 2011. DOI
10.1109/SAMOS.2011.6045489.

[99] The MathWorks. MATLAB and Simulink for Technical Computing. URL http://
www.mathworks.com/.

[100] John R. Treichler and Brian G. Agee. A New Approach to Multipath Correction of
Constant Modulus Signals. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 31(2):459-472, April 1983. DOI 10.1109/TASSP.1983.1164062.

[101] Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Pey-
ton Jones. Algorithm + strategy = parallelism. Journal of Functional Programming,
8(1):23-60, January 1998. DOI 10.1017/50956796897002967.

Alain Vachoux, Christoph Grimm, and Karsten Einwich. SystemC-AMS Require-
ments, Design Objectives and Rationale. In Design, Automation and Test in Europe
Conference and Exhibition (DATE 2003), pages 388-393. IEEE, December 2003. ISBN
0-7695-1870-2. DOI10.1109/DATE.2003.1253639.

[103] Vesa Vialimaki and Timo I. Laakso. Principles of fractional delay filters. In Acoustics,
Speech, and Signal Processing (ICASSP’00), IEEE International Conference on, pages
3870-3873. IEEE, June 2000. DOI 10.1109/ICASSP.2000.8602438.

[104] Marcel D. van de Burgwal. Interfacing networks-on-chip : hardware meeting software.
PhD thesis, University of Twente, October 2010. ISBN 978-90-365-3067-5. DOI
10.3990/1.9789036530675.

[105] Harry L. van Trees. Optimum array processing, volume Detection, estimation and
modulation theory. Wiley, March 2002. ISBN 978-0-4710-9390-9.

[106] Frank E. van Vliet. Trends in Wideband Phased-Array Front-Ends. In European
Radar Conference (EuRAD 2007), October 2007. ISBN 978-2-87487-004-0. DOI
10.1109/EURAD.2007.4404960.

[107] Sriram Vangal et al. An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS.
In Solid-State Circuits Conference (ISSCC 2007), IEEE International, pages 98-99,589,
February 2007. DOI 10.1109/ISSCC.2007.373606.

[108] Arthur H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4):
365-396, December 1986. DOI 10.1145/27633.28055.

[109] Hubregt J. Visser. Array and Phased Array Antenna Basics. Wiley, September 2005.
ISBN 978-0-470-87117-1.

[110] Jack E. Volder. The CORDIC Trigonometric Computing Technique. Elec-
tronic Computers, IRE Transactions on, 8(3):330-334, September 1959. DOI
10.1109/TEC.1959.5222693.

(102

213

http://dx.doi.org/10.1145/2000367.2000376
http://dx.doi.org/10.1109/SAMOS.2011.6045489
http://dx.doi.org/10.1109/SAMOS.2011.6045489
http://www.mathworks.com/
http://www.mathworks.com/
http://dx.doi.org/10.1109/TASSP.1983.1164062
http://dx.doi.org/10.1017/S0956796897002967
http://dx.doi.org/10.1109/DATE.2003.1253639
http://dx.doi.org/10.1109/ICASSP.2000.860248
http://dx.doi.org/10.3990/1.9789036530675
http://dx.doi.org/10.3990/1.9789036530675
http://dx.doi.org/10.1109/EURAD.2007.4404960
http://dx.doi.org/10.1109/EURAD.2007.4404960
http://dx.doi.org/10.1109/ISSCC.2007.373606
http://dx.doi.org/10.1145/27633.28055
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/TEC.1959.5222693

[111] Jasper D. Vrielink. Phased Array Processing: Direction of Arrival Estimation on Recon-
figurable Hardware. Master’s thesis, University of Twente, January 2009.

[112] John S. Walther. A unified algorithm for elementary functions. In Spring Joint Com-
214 puter Conference (AFIPS’71), pages 379-385, May 1971. DOI 10.1145/1478786.1478840.

[113] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Functional program-
ming (ICFP’01), 6th ACM SIGPLAN International Conference on, pages 146-156. ACM,
September 2001. DOI 10.1145/507635.507654.

[114] Rinse Wester. A dataflow architecture for beamforming operations. Master’s thesis,
December 2010.

[115] Maarten H. Wiggers. Aperiodic multiprocessor scheduling for real-time stream process-
ing applications. PhD thesis, University of Twente, June 2009. ISBN 978-90-365-2850-
4. DOI10.3990/1.9789036528504.

[116] Pascal T. Wolkotte. Exploration within the Network-on-Chip Paradigm. PhD
thesis, University of Twente, January 2009. ISBN 978-90-365-2757-6. DOI
10.3990/1.9789036527576.

[117] Pascal T. Wolkotte, Gerard J. M. Smit, Gerard K. Rauwerda, and Lodewijk T. Smit. An
Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip. In Parallel and
Distributed Processing Symposium (RAW 2005), 19th IEEE International. IEEE Com-
puter Society, April 2005. ISBN 978-0-7695-2312-9. DOI 10.1109/TPDPS.2005.95.

[118] Zhengyuan Xu. New cost function for blind estimation of M-PSK signals. In Wireless
Communications and Networking Conference (WCNC 2000), IEEE, pages 1501-1505,
September 2000. DOI 10.1109/WCNC.2000.904857.

[119] Haiyang Zheng. Operational Semantics of Hybrid Systems. PhD thesis, University of
California Berkeley, May 2007. ISBN 978-0-549-17252-9.

(120

Ilan Ziskind and Mati Wax. Maximum likelihood localization of multiple sources by
alternating projection. Acoustics, Speech and Signal Processing, IEEE Transactions on,
36(10):1553-1560, October 1988. DOI10.1109/29.7543.

http://dx.doi.org/10.1145/1478786.1478840
http://dx.doi.org/10.1145/507635.507654
http://dx.doi.org/10.3990/1.9789036528504
http://dx.doi.org/10.3990/1.9789036527576
http://dx.doi.org/10.3990/1.9789036527576
http://dx.doi.org/10.1109/IPDPS.2005.95
http://dx.doi.org/10.1109/WCNC.2000.904857
http://dx.doi.org/10.1109/29.7543

List of Publications

REFEREED

[KCR:1]

[KCR:2]

[KCR:3]

[KCR:4]

[KCR:5]

[KCR:6]

[KCR:7]

Arjan C. Dam, Michel G. J. Lammertink, Kenneth C. Rovers, Johan Slagman,
Arno M. Wellink, Gerard K. Rauwerda, and Gerard J. M. Smit. Hardware / Soft-
ware Co-design Applied to Reed-Solomon Decoding for the DMB Standard. In
Digital System Design: Architectures, Methods and Tools (DSD 2006), 9th EU-
ROMICRO Conference on, pages 447-455. IEEE Computer Society, August 2006.
ISBN 978-0-7695-2609-8. DOI 10.1109/DSD.2006.59.

Mark S. Oude Alink, André B. J. Kokkeler, Eric A. M. Klumperink, Kenneth C.
Rovers, Gerard J. M. Smit, and Bram Nauta. Spurious-Free Dynamic Range
of a Uniform Quantizer. Circuits and Systems Part II: Express Briefs, IEEE
Transactions on, 56(6):434-438, June 2009. ISSN 1549-7747. DOI 10.1109/TC-
SI1.2009.2020929.

Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, and Gerard J. M. Smit.
Towards effective modeling and programming multi-core tiled reconfigurable ar-
chitectures. In Engineering of Reconfigurable Systems & Algorithms (ERSA 09),
International Conference on, pages 167-173. CSREA, July 2009. ISBN 978-1-60132-
101-5.

Koen C. H. Blom, Marcel D. van de Burgwal, Kenneth C. Rovers, André B. J.
Kokkeler, and Gerard J. M. Smit. DVB-S Signal Tracking Techniques for Mo-
bile Phased Arrays. In Vehicular Technology Conference Fall (VTC 2010-Fall),
IEEE 72nd, pages 1-5. IEEE, September 2010. ISBN 978-1-4244-3573-9. DOI
10.1109/VETECFE.2010.5594146.

Anja Niedermeier, Rinse Wester, Kenneth C. Rovers, Christiaan Baaij, Jan Ku-
per, and Gerard J. M. Smit. Designing a dataflow processor using CAaSH. In
NORCHIP 2010, pages 1-4. IEEE, November 2010. ISBN 978-1-4244-8971-8. DOI
10.1109/NORCHIP.2010.5669445.

Marcel D. van de Burgwal, Kenneth C. Rovers, Koen C. H. Blom, André B. J.
Kokkeler, and Gerard J. M. Smit. Adaptive Beamforming Using the Reconfig-
urable MONTIUM TP. In Digital System Design: Architectures, Methods and
Tools (DSD 2010), 13th Euromicro Conference on, pages 301-308. IEEE Computer
Society, September 2010. ISBN 978-1-4244-7839-2. DOI 10.1109/DSD.2010.13.

Koen C. H. Blom, Marcel D. van de Burgwal, Kenneth C. Rovers, André B. J.
Kokkeler, and Gerard J. M. Smit. Angular CMA: A modified Constant Modulus
Algorithm providing steering angle updates. In Wireless and Mobile Communica-
tions (ICWMC 2011), 7th International Conference on, pages 42-47. IARIA, June
2011. ISBN 978-1-61208-140-3.

http://dx.doi.org/10.1109/DSD.2006.59
http://dx.doi.org/10.1109/TCSII.2009.2020929
http://dx.doi.org/10.1109/TCSII.2009.2020929
http://dx.doi.org/10.1109/VETECF.2010.5594146
http://dx.doi.org/10.1109/VETECF.2010.5594146
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1109/NORCHIP.2010.5669445
http://dx.doi.org/10.1109/DSD.2010.13

216

[KCR:8]

[KCR:9]

[KCR:10]

[KCR:11]

Kenneth C. Rovers, Jan Kuper, and Gerard J. M. Smit. The problem with time in
mixed continuous/discrete time modelling. ACM SIGBED Review, 8(2):27-30,
June 2011. ISSN 1551-3688. DOI 10.1145/2000367.2000373.

Kenneth C. Rovers, Jan Kuper, Marcel D. van de Burgwal, André B. J. Kokkeler,
and Gerard J. M. Smit. Mixed continuous / discrete time modelling with exact
time adjustments. In Wireless Communications and Mobile Computing Conference
(CyPhy’11), 7th International, pages 1111-1116. IEEE, July 2011. ISBN 978-1-4244-
9539-9. DOI10.1109/TWCMC.2011.5982696.

Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, André B. J. Kokkeler,
and Gerard J. M. Smit. Multi-domain transformational design flow for embedded
systems. In Embedded Computer Systems (SAMOS 2011), International Conference
on, pages 93-101. IEEE Computer Society, July 2011. ISBN 978-1-4577-0802-2.
DOI10.1109/SAMOS.2011.6045449.

Marcel D. van de Burgwal, Kenneth C. Rovers, Koen C. H. Blom, André B. J.
Kokkeler, and Gerard J. M. Smit. Mobile satellite reception with a virtual satellite
dish based on a reconfigurable multi-processor architecture. Microprocessors and
Microsystems, pages 1-29, 2011. ISSN 0141-9331. DOI110.1016/j.micpro.2011.08.005.

NON-REFEREED

[KCR:12]

[KCR:13]

[KCR:14]

[KCR:15]

[KCR:16]

Kenneth C. Rovers, Marcel D. van de Burgwal, André B. J. Kokkeler, and Gerard
J. M. Smit. Rationale for and design of a generic tiled hierarchical phased array
beamforming architecture. In Circuits, Systems and Signal Processing (ProRISC
2007), 18th Annual Workshop on, pages 160-168. STW Technology Foundation,
November 2007.

Marcel D. van de Burgwal, Kenneth C. Rovers, André B.]. Kokkeler, Gerard
J. M. Smit, S Kasra Garakoui, Michiel C M Soer, Eric A. M. Klumperink, and
Bram Nauta. CMOS Beamforming Techniques project overview. In Scien-
tific ICT Research Event Netherlands (SIREN 2007). Informatica Platform Ned-
erland, October 2007 URL http://www.ictonderzoek.net/3/assets/
File/posters/2007_23/2007_23.pdf.

Kenneth C. Rovers, Jan Kuper, and Gerard J. M. Smit. Semantic programming
model-based design - Defining a hierarchical tiled multi-processor architecture.
In Circuits, Systems and Signal Processing (ProRISC 2008), 19th Annual Workshop
on, pages 83-88. STW Technology Foundation, November 2008.

Kenneth C. Rovers, Marcel D. van de Burgwal, André B. J. Kokkeler, Jan
Kuper, and Gerard J. M. Smit. Phased Array Beamforming Processing
- Semantic & Dataflow Model Based Design. In Scientific ICT Research
Event Netherlands (SIREN 2009). Informatica Platform Nederland, November
2009. URL http://wuw.ictonderzoek.net/3/assets/File/posters/
2009_44/2009_44 . pdf.

Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, André B.]. Kokkeler,
and Gerard J. M. Smit. On reconfigurable tiled multi-core programming - Pro-
cessing cores evaluation. In Circuits, Systems and Signal Processing (ProRISC
2009), 20th Annual Workshop on, pages 507-514. STW Technology Foundation,
November 2009.

http://dx.doi.org/10.1145/2000367.2000373
http://dx.doi.org/10.1109/IWCMC.2011.5982696
http://dx.doi.org/10.1109/SAMOS.2011.6045449
http://dx.doi.org/10.1016/j.micpro.2011.08.005
http://www.ictonderzoek.net/3/assets/File/posters/2007_23/2007_23.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2007_23/2007_23.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2009_44/2009_44.pdf
http://www.ictonderzoek.net/3/assets/File/posters/2009_44/2009_44.pdf

Kenneth C. Rovers
received his M.Sc. degree in elec-
trical engineering and his M.Sc. degree
in computer science in 2006 from the
University of Twente, the Netherlands. For the last
five years he has been working towards his Ph.D. degree
in the Computer Architecture for Embedded Systems
(CAES) group at the same university. His master’s thesis
was on the system design of RF front-ends. The work
presented in this thesis is in the area of model-based
design of embedded systems, focusing on the modelling
of multiple domains, accurate inclusion of time, mathe-
matical definitions, and model transformations,
with a3 beamforming application as an example.
His research interests include system level design,
functional programming, reconfigurable
tiled architectures, and dataflow
processors.

ISBN 978-90-365-3294-5

	Introduction
	Trends in embedded systems
	Beamforming as an example
	Problem statement
	Contributions
	Outline

	Application domain: beamforming
	Characteristics
	Signal processing
	Streaming data
	Hybrid systems
	Adaptive algorithms

	Phased array beamforming theory
	Beamforming
	Beamsteering
	Time delay
	Phase shift
	Hilbert transform

	Delay at baseband
	Narrowband and wideband
	Phased array system characteristics

	Generic beamforming platform
	Applications
	Requirements
	System design
	Beamforming location
	Block diagram
	Environment
	Analogue front-end
	Digital processing

	Hierarchical beamforming
	Hybrid beamforming

	Beamcontrol
	Beamcontrol algorithm classes
	Temporal reference
	Spatial reference
	Blind

	Extended CMA
	Constant modulus algorithm
	Phase extension
	E-CMA for beamforming
	Results

	Angular CMA
	Derivation
	Results

	Conclusion

	Tiled reconfigurable architectures for beamforming
	Requirements from the application domain
	Distributed processing
	Communication infrastructure
	Flexibility

	Architecture
	Tiled architectures
	Reconfigurable architectures
	The programming challenge

	Experiments with tiled reconfigurable architectures
	Audio beamforming on a single reconfigurable processor
	A tiled reconfigurable architecture for a DVB-S beamformer
	A conceptual tiled architecture for radio astronomy
	Discussion

	Conclusion

	Model-based design of multi-domain systems
	Motivation
	Model-based design
	Systems engineering
	Model transformations
	Design space exploration

	Environment
	Dataflow
	Mathematical foundation
	Mathematical definition
	Functional languages

	Time, signals, components and systems
	Continuous and discrete time signals
	Signal flow diagrams
	Signals and components in dataflow models
	Other domains

	The problem with time
	Notions of time
	Global solver
	Discretisation of time
	Time transformations

	Survey of existing tools
	Major tools
	Exact continuous time domain modelling
	Multi-domain modelling
	Mathematical definitions
	Model transformation support
	Automatic parallelisation

	Unified modelling based on time
	Model-based design
	Exact continuous time domain modelling
	Mathematical definitions

	Design flow
	Co-design
	Analogue/Digital co-design
	Hardware/Software co-design

	Partitioning
	Example

	Conclusion

	UniTi
	Formalisation of the domains
	Continuous time
	Discrete time
	Dataflow
	Processes and channels
	Components and signals
	Definitions
	Definitions provided by UniTi
	Generalisation

	Representation in Haskell

	Composition
	Sequential
	Parallel
	Feedback
	Representation in Haskell
	Algebra
	Calculus

	Integration of the domains
	DT CT
	DF DT
	Unified model
	Time
	Multi-rate

	Simulation
	Evaluation
	Visualisation
	Memory and state
	Using state
	Hiding state
	Feedback with state in the CT domain

	Model transformations
	Co-design
	Partitioning
	Control parallelism
	Data parallelism
	Aggregate operations
	Transformation

	Design space exploration

	Conclusion

	Case study
	Specification
	Co-design
	Simple beamformer
	Simulink model
	UniTi model
	Comparison

	Adaptive beamformer
	Simulink model
	UniTi model
	Comparison

	Hierarchical beamformer
	Simulink model
	UniTi model
	Comparison

	Partitioning
	Granularity
	E-CMA on a tiled architecture

	Mapping
	Assignment of kernels
	Scheduling

	Implementation
	Beamformer
	Baseband processing
	Beamcontrol

	Results
	UniTi
	Applicability
	Flexibility

	Adaptive beamforming on the LEON SoC platform
	Applicability
	Flexibility

	Conclusion

	Conclusions
	Research questions
	Discussion
	Outlook

	Dataflow
	Terminology
	Dataflow model
	Dataflow analysis
	Dataflow execution
	Properties

	The Montium
	Processor landscape
	The Montium processor
	Kernels implemented on the Montium

	Acronyms
	Bibliography
	List of Publications
	Refereed
	Non-refereed

